Yuan Mengqin, Liu Haizhou, Huang Yu-E, Hou Fei, Wang Lihong, Wang Quan, Jiang Wei
Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
NPJ Precis Oncol. 2025 Jun 18;9(1):194. doi: 10.1038/s41698-025-00992-9.
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, yet the response rate remains limited, with only about 30% of solid tumor patients benefiting. Identifying reliable biomarkers to predict ICIs response remains a significant challenge. In this study, we proposed a refined Hallmark gene set-based Approach for Predicting Immunotherapy Response (HAPIR). Through comprehensive multi-cohort analyses encompassing six TIGER cohorts (n = 352) and TCGA-SKCM (n = 472), we validated the optimal performance of HAPIR. Using transcriptomic data from a training cohort, we firstly refined seven Hallmark gene sets enriched with differentially expressed genes between responder and non-responder patients. Then, a logistic regression model trained based on the activities of these gene sets demonstrated superior predictive performance (AUROC = 0.778) in ten-fold cross-validation, significantly outperforming 13 existing biomarkers, including PD-1 (AUROC = 0.678) and PD-L1 (AUROC = 0.54). HAPIR's robustness was further validated in the validation set and four independent cohorts spanning multiple cancer types (melanoma, NSCLC, and STAD), consistently achieving average AUROC = 0.745. Beyond well-known biomarkers, HAPIR surpassed both gene-based and alternative gene set-based models. Importantly, HAPIR scores correlated significantly with patient survival and effectively recapitulated the immune microenvironment, enabling the prediction of potential drug targets and drug candidates to overcome immunotherapy resistance. In conclusion, HAPIR is a promising tool for predicting ICIs response and guiding the development of new immunotherapy strategies.
免疫检查点抑制剂(ICIs)彻底改变了癌症治疗方式,但应答率仍然有限,只有约30%的实体瘤患者从中受益。识别可靠的生物标志物以预测ICIs应答仍然是一项重大挑战。在本研究中,我们提出了一种基于标志性基因集的预测免疫治疗应答的优化方法(HAPIR)。通过对六个TIGER队列(n = 352)和TCGA-SKCM(n = 472)进行全面的多队列分析,我们验证了HAPIR的最佳性能。利用来自训练队列的转录组数据,我们首先优化了七个标志性基因集,这些基因集富含应答者和非应答者患者之间差异表达的基因。然后,基于这些基因集的活性训练的逻辑回归模型在十折交叉验证中表现出卓越的预测性能(AUROC = 0.778),显著优于包括PD-1(AUROC = 0.678)和PD-L1(AUROC = 0.54)在内的13种现有生物标志物。HAPIR的稳健性在验证集和涵盖多种癌症类型(黑色素瘤、非小细胞肺癌和胃癌)的四个独立队列中得到进一步验证,始终实现平均AUROC = 0.745。除了知名的生物标志物外,HAPIR还超越了基于基因和基于替代基因集的模型。重要的是,HAPIR评分与患者生存率显著相关,并有效地概括了免疫微环境,能够预测潜在的药物靶点和候选药物以克服免疫治疗耐药性。总之,HAPIR是一种有前途的工具,可用于预测ICIs应答并指导新免疫治疗策略的开发。