Suppr超能文献

使用因果启发式神经网络进行治疗性干预的组合预测。

Combinatorial prediction of therapeutic perturbations using causally inspired neural networks.

作者信息

Gonzalez Guadalupe, Lin Xiang, Herath Isuru, Veselkov Kirill, Bronstein Michael, Zitnik Marinka

机构信息

Imperial College London, London, UK.

F. Hoffmann-La Roche Ltd, Basel, Switzerland.

出版信息

Nat Biomed Eng. 2025 Sep 9. doi: 10.1038/s41551-025-01481-x.

Abstract

Phenotype-driven approaches identify disease-counteracting compounds by analysing the phenotypic signatures that distinguish diseased from healthy states. Here we introduce PDGrapher, a causally inspired graph neural network model that predicts combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem and predicts the perturbagens needed to achieve a desired response by embedding disease cell states into networks, learning a latent representation of these states, and identifying optimal combinatorial perturbations. In experiments in nine cell lines with chemical perturbations, PDGrapher identifies effective perturbagens in more testing samples than competing methods. It also shows competitive performance on ten genetic perturbation datasets. An advantage of PDGrapher is its direct prediction, in contrast to the indirect and computationally intensive approach common in phenotype-driven models. It trains up to 25× faster than existing methods, providing a fast approach for identifying therapeutic perturbations and advancing phenotype-driven drug discovery.

摘要

表型驱动的方法通过分析区分疾病状态和健康状态的表型特征来识别疾病对抗化合物。在此,我们介绍PDGrapher,这是一种受因果关系启发的图神经网络模型,它可以预测能够逆转疾病表型的组合扰动因素(治疗靶点集)。与学习扰动如何改变表型的方法不同,PDGrapher解决的是逆问题,即通过将疾病细胞状态嵌入网络、学习这些状态的潜在表示并识别最佳组合扰动,来预测实现所需反应所需的扰动因素。在对九条细胞系进行化学扰动的实验中,PDGrapher在更多测试样本中识别出了比竞争方法更有效的扰动因素。它在十个基因扰动数据集上也表现出了有竞争力的性能。与表型驱动模型中常见的间接且计算量大的方法相比,PDGrapher的一个优势在于其直接预测。它的训练速度比现有方法快25倍,为识别治疗性扰动和推进表型驱动的药物发现提供了一种快速方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验