Tamura Ryo, Nagata Kenji, Sodeyama Keitaro, Nakamura Kensaku, Tokuhira Toshiki, Shibata Satoshi, Hammura Kazuki, Sugisawa Hiroki, Kawamura Masaya, Tsurimoto Teruki, Naito Masanobu, Demura Masahiko, Nakanishi Takashi
Materials Open Platform for Chemistry, National Institute for Materials Science, Ibaraki, Japan.
Center for Basic Research on Materials, National Institute for Materials Science, Ibaraki, Japan.
Sci Technol Adv Mater. 2024 Aug 5;25(1):2388016. doi: 10.1080/14686996.2024.2388016. eCollection 2024.
Predicting the mechanical properties of polymer materials using machine learning is essential for the design of next-generation of polymers. However, the strong relationship between the higher-order structure of polymers and their mechanical properties hinders the mechanical property predictions based on their primary structures. To incorporate information on higher-order structures into the prediction model, X-ray diffraction (XRD) can be used. This study proposes a strategy to generate appropriate descriptors from the XRD analysis of the injection-molded polypropylene samples, which were prepared under almost the same injection molding conditions. To this end, first, Bayesian spectral deconvolution is used to automatically create high-dimensional descriptors. Second, informative descriptors are selected to achieve highly accurate predictions by implementing the black-box optimization method using Ising machine. This approach was applied to custom-built polymer datasets containing data on homo- polypropylene and derived composite polymers with the addition of elastomers. Results show that reasonable accuracy of predictions for seven mechanical properties can be achieved using only XRD.
利用机器学习预测聚合物材料的机械性能对于下一代聚合物的设计至关重要。然而,聚合物的高阶结构与其机械性能之间的强相关性阻碍了基于其一级结构的机械性能预测。为了将高阶结构信息纳入预测模型,可以使用X射线衍射(XRD)。本研究提出了一种策略,可从在几乎相同的注塑条件下制备的注塑聚丙烯样品的XRD分析中生成合适的描述符。为此,首先,使用贝叶斯光谱解卷积自动创建高维描述符。其次,通过使用伊辛机实施黑箱优化方法来选择信息丰富的描述符,以实现高度准确的预测。该方法应用于包含均聚聚丙烯以及添加弹性体的衍生复合聚合物数据的定制聚合物数据集。结果表明,仅使用XRD就能对七种机械性能实现合理的预测精度。