Einabadi Elham, Mashkoori Mahdi
Department of Physics, K.N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran.
Sci Rep. 2024 Oct 15;14(1):24204. doi: 10.1038/s41598-024-73551-0.
Refractive index (RI) is one of the most important optical properties of materials. Due to the high importance of this physical parameter, there has always been a demand to find a method that provides the most optimal estimation. In this research, we utilize experimentally measured RI values of 272 inorganic compounds to build a machine learning model capable of predicting the RI of materials with low computational cost. Considering the significant relationship between the band gap and RI, we select this parameter as a predictor. In addition to the band gap, the atomic properties related to the building elements of the compounds form our data set in this work. To find the most optimal model and set of suitable predictors, we examine our data in four categories with 1, 5, 10, and 21 features. In addition, we compare the predicted RIs of 6 different independent regression methods, namely, ordinary least squares (OLSR), Gaussian process (GPR), support vector (SVR), random forest (RFR), gradient boosted trees (GBTR), and extremely randomized trees regression(ERTR). We notice that ERTR predicts RI with the highest accuracy compared to other regression methods. The prediction strength of our model excels in empirical relations and provides accurate results for a wide range of RIs. Thus, we demonstrate the high potential of machine learning methods for evaluating the RI, especially when it comes to providing an estimation of a desired physical quantity.
折射率(RI)是材料最重要的光学性质之一。由于这个物理参数的高度重要性,人们一直需要找到一种能提供最优化估计的方法。在本研究中,我们利用272种无机化合物的实验测量折射率值来构建一个能够以低计算成本预测材料折射率的机器学习模型。考虑到带隙与折射率之间的显著关系,我们选择这个参数作为预测指标。除了带隙之外,与化合物构成元素相关的原子性质也构成了我们这项工作中的数据集。为了找到最优模型和合适的预测指标集,我们将数据分为四类,分别具有1、5、10和21个特征来进行检验。此外,我们比较了六种不同的独立回归方法预测的折射率,即普通最小二乘法(OLSR)、高斯过程(GPR)、支持向量(SVR)、随机森林(RFR)、梯度提升树(GBTR)和极端随机树回归(ERTR)。我们注意到,与其他回归方法相比,ERTR预测折射率的准确率最高。我们模型的预测能力在经验关系方面表现出色,并且能为广泛的折射率范围提供准确结果。因此,我们证明了机器学习方法在评估折射率方面具有很高的潜力,特别是在提供所需物理量的估计时。