Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637.
Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13453-13458. doi: 10.1073/pnas.1711543114. Epub 2017 Dec 5.
Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or "theft" mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein-coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein-Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change.
磷酸化是蛋白质相互作用的主要调节方式,但其具体的调节机制尚不清楚。在这里,我们发现了一种盐桥竞争或“窃取”机制,它可以使 Raf 激酶抑制蛋白(RKIP)在磷酸化后触发蛋白伴侣的交换。RKIP 在磷酸化后从抑制 Raf-1 转变为抑制 G 蛋白偶联受体激酶 2,从而连接 MAP 激酶和 G 蛋白偶联受体信号。NMR 和晶体学表明,磷酸丝氨酸而不是磷酸模拟物与预先存在的盐桥中的赖氨酸竞争,引发部分展开事件并促进新的蛋白质相互作用。这种“窃取”的结构基础在进化早期就存在,并且在 10%的同源寡聚体和 30%的异源寡聚体中都能发现,包括 Bax、肌钙蛋白 C 和早期内体抗原 1。与结合伴侣对磷酸化残基的直接识别不同,盐桥窃取机制代表了一种使用溶剂可及残基促进或破坏蛋白质相互作用的简便策略,并且它可以通过局部展开或构象变化在蛋白质界面提供额外的特异性。