Suppr超能文献

基于长期脑电图上的一维局部二值模式的形态特征自动癫痫发作检测

Automatic Seizure Detection Based on Morphological Features Using One-Dimensional Local Binary Pattern on Long-Term EEG.

作者信息

Shanir P P Muhammed, Khan Kashif Ahmad, Khan Yusuf Uzzaman, Farooq Omar, Adeli Hojjat

机构信息

1 Department of Electrical and Electronics Engineering, Thangal Kunju Musaliar College of Engineering, Kollam, Kerala, India.

2 Department of Electrical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

出版信息

Clin EEG Neurosci. 2018 Sep;49(5):351-362. doi: 10.1177/1550059417744890. Epub 2017 Dec 7.

Abstract

Epileptic neurological disorder of the brain is widely diagnosed using the electroencephalography (EEG) technique. EEG signals are nonstationary in nature and show abnormal neural activity during the ictal period. Seizures can be identified by analyzing and obtaining features of EEG signal that can detect these abnormal activities. The present work proposes a novel morphological feature extraction technique based on the local binary pattern (LBP) operator. LBP provides a unique decimal value to a sample point by weighing the binary outcomes after thresholding the neighboring samples with the present sample point. These LBP values assist in capturing the rising and falling edges of the EEG signal, thus providing a morphologically featured discriminating pattern for epilepsy detection. In the present work, the variability in the LBP values is measured by calculating the sum of absolute difference of the consecutive LBP values. Interquartile range is calculated over the preprocessed EEG signal to provide dispersion measure in the signal. For classification purpose, K-nearest neighbor classifier is used, and the performance is evaluated on 896.9 hours of data from CHB-MIT continuous EEG database. Mean accuracy of 99.7% and mean specificity of 99.8% is obtained with average false detection rate of 0.47/h and sensitivity of 99.2% for 136 seizures.

摘要

癫痫性脑部神经疾病广泛使用脑电图(EEG)技术进行诊断。EEG信号本质上是非平稳的,并且在发作期显示出异常的神经活动。通过分析和获取能够检测这些异常活动的EEG信号特征,可以识别癫痫发作。目前的工作提出了一种基于局部二值模式(LBP)算子的新型形态特征提取技术。LBP通过将相邻样本与当前样本点进行阈值处理后的二进制结果加权,为样本点提供一个唯一的十进制值。这些LBP值有助于捕捉EEG信号的上升沿和下降沿,从而为癫痫检测提供一种形态特征判别模式。在目前的工作中,通过计算连续LBP值的绝对差之和来测量LBP值的变异性。在预处理后的EEG信号上计算四分位距,以提供信号中的离散度度量。为了进行分类,使用了K近邻分类器,并在来自CHB-MIT连续EEG数据库的896.9小时数据上评估了性能。对于136次癫痫发作,平均准确率为99.7%,平均特异性为99.8%,平均误检率为0.47/h,灵敏度为99.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验