Suppr超能文献

预测适用于特定工业应用的最合适木质生物质:使用荧光标记的碳水化合物结合模块对木材、制浆和酶处理进行比较。

Predicting the most appropriate wood biomass for selected industrial applications: comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules.

作者信息

Bombeck Pierre-Louis, Khatri Vinay, Meddeb-Mouelhi Fatma, Montplaisir Daniel, Richel Aurore, Beauregard Marc

机构信息

AgroBioChem Department, Laboratory of Biomass and Green Technologies, University of Liège, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium.

Université du Québec à Trois-Rivières, Centre de Recherche sur les Matériaux Lignocellulosiques, C.P. 500, Trois-Rivières, QC G9A 5H7 Canada.

出版信息

Biotechnol Biofuels. 2017 Dec 6;10:293. doi: 10.1186/s13068-017-0980-0. eCollection 2017.

Abstract

BACKGROUND

Lignocellulosic biomass will progressively become the main source of carbon for a number of products as the Earth's oil reservoirs disappear. Technology for conversion of wood fiber into bioproducts (wood biorefining) continues to flourish, and access to reliable methods for monitoring modification of such fibers is becoming an important issue. Recently, we developed a simple, rapid approach for detecting four different types of polymer on the surface of wood fibers. Named fluorescent-tagged carbohydrate-binding module (FTCM), this method is based on the fluorescence signal from carbohydrate-binding modules-based probes designed to recognize specific polymers such as crystalline cellulose, amorphous cellulose, xylan, and mannan.

RESULTS

Here we used FTCM to characterize pulps made from softwood and hardwood that were prepared using Kraft or chemical-thermo-mechanical pulping. Comparison of chemical analysis (NREL protocol) and FTCM revealed that FTCM results were consistent with chemical analysis of the hemicellulose composition of both hardwood and softwood samples. Kraft pulping increased the difference between softwood and hardwood surface mannans, and increased xylan exposure. This suggests that Kraft pulping leads to exposure of xylan after removal of both lignin and mannan. Impact of enzyme cocktails from (Celluclast 1.5L) and from sp. (Carezyme 1000L) was investigated by analysis of hydrolyzed sugars and by FTCM. Both enzymes preparations released cellobiose and glucose from pulps, with the cocktail from being the most efficient. Enzymatic treatments were not as effective at converting chemical-thermomechanical pulps to simple sugars, regardless of wood type. FTCM revealed that amorphous cellulose was the primary target of either enzyme preparation, which resulted in a higher proportion of crystalline cellulose on the surface after enzymatic treatment. FTCM confirmed that enzymes from had little impact on exposed hemicelluloses, but that enzymes from the more aggressive cocktail reduced hemicelluloses at the surface.

CONCLUSIONS

Overall, this study indicates that treatment with enzymes from is appropriate for generating crystalline cellulose at fiber surface. Applications such as nanocellulose or composites requiring chemical resistance would benefit from this enzymatic treatment. The milder enzyme mixture from allowed for removal of amorphous cellulose while preserving hemicelluloses at fiber surface, which makes this treatment appropriate for new paper products where surface chemical responsiveness is required.

摘要

背景

随着地球石油储量的消失,木质纤维素生物质将逐渐成为多种产品的主要碳源。将木纤维转化为生物产品的技术(木材生物精炼)持续蓬勃发展,获取可靠的方法来监测此类纤维的改性正成为一个重要问题。最近,我们开发了一种简单、快速的方法来检测木纤维表面的四种不同类型的聚合物。这种方法名为荧光标记碳水化合物结合模块(FTCM),基于设计用于识别特定聚合物(如结晶纤维素、无定形纤维素、木聚糖和甘露聚糖)的基于碳水化合物结合模块的探针发出的荧光信号。

结果

在此,我们使用FTCM对采用硫酸盐法或化学热机械法制得的针叶木和阔叶木纸浆进行表征。化学分析(NREL协议)与FTCM的比较表明,FTCM的结果与针叶木和阔叶木样品半纤维素组成的化学分析结果一致。硫酸盐法制浆增加了针叶木和阔叶木表面甘露聚糖之间的差异,并增加了木聚糖的暴露量。这表明硫酸盐法制浆在去除木质素和甘露聚糖后会导致木聚糖的暴露。通过分析水解糖和使用FTCM研究了来自里氏木霉(Celluclast 1.5L)和黑曲霉(Carezyme 1000L)的酶混合物的影响。两种酶制剂都从纸浆中释放出纤维二糖和葡萄糖,其中来自里氏木霉的混合物效率最高。无论木材类型如何,酶处理在将化学热机械纸浆转化为单糖方面效果都不太好。FTCM表明无定形纤维素是两种酶制剂的主要作用目标,这导致酶处理后表面结晶纤维素的比例更高。FTCM证实来自里氏木霉的酶对暴露的半纤维素影响很小,但来自更具侵蚀性的黑曲霉混合物的酶减少了表面的半纤维素。

结论

总体而言,本研究表明用来自里氏木霉的酶进行处理适合在纤维表面生成结晶纤维素。纳米纤维素或需要耐化学性的复合材料等应用将受益于这种酶处理。来自黑曲霉的较温和酶混合物能够去除无定形纤维素,同时在纤维表面保留半纤维素,这使得这种处理适用于需要表面化学响应性的新型纸制品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9353/5718010/08e93a38bedc/13068_2017_980_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验