Suppr超能文献

潜在资源的碳水化合物结合模块:在自然界中的存在、功能及其在纤维识别与处理中的应用

Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment.

作者信息

Liu Yena, Wang Peipei, Tian Jing, Seidi Farzad, Guo Jiaqi, Zhu Wenyuan, Xiao Huining, Song Junlong

机构信息

International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.

Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.

出版信息

Polymers (Basel). 2022 Apr 28;14(9):1806. doi: 10.3390/polym14091806.

Abstract

Great interests have recently been aroused in the independent associative domain of glycoside hydrolases that utilize insoluble polysaccharides-carbohydrate-binding module (CBM), which responds to binding while the catalytic domain reacts with the substrate. In this mini-review, we first provide a brief introduction on CBM and its subtypes including the classifications, potential sources, structures, and functions. Afterward, the applications of CBMs in substrate recognition based on different types of CBMs have been reviewed. Additionally, the progress of CBMs in paper industry as a new type of environmentally friendly auxiliary agent for fiber treatment is summarized. At last, other applications of CBMs and the future outlook have prospected. Due to the specificity in substrate recognition and diversity in structures, CBM can be a prosperous and promising 'tool' for wood and fiber processing in the future.

摘要

最近,人们对糖苷水解酶利用不溶性多糖的独立关联结构域——碳水化合物结合模块(CBM)产生了浓厚兴趣,该模块在催化结构域与底物反应时响应结合。在这篇小型综述中,我们首先简要介绍CBM及其亚型,包括分类、潜在来源、结构和功能。随后,基于不同类型的CBM对其在底物识别中的应用进行了综述。此外,总结了CBM作为一种新型环保纤维处理助剂在造纸工业中的进展。最后,展望了CBM的其他应用和未来前景。由于其在底物识别方面的特异性和结构多样性,CBM未来可能成为木材和纤维加工领域繁荣且有前景的“工具”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cea/9100146/5ec41f6c8540/polymers-14-01806-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验