Suppr超能文献

CD38 敲除可抑制小鼠肿瘤发生和人肺癌细胞的集落形成生长。

CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells.

机构信息

Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

出版信息

Carcinogenesis. 2018 Feb 9;39(2):242-251. doi: 10.1093/carcin/bgx137.

Abstract

The ectodomain of the plasma membrane ectoenzyme CD38 functions as both an NAD glycohydrolase and an ADP-ribosyl cyclase by catalyzing, respectively, the conversion of NAD to nicotinamide and ADP-ribose or cyclic ADP-ribose. CD38 is attracting particular attention in cancer therapy. An anti-CD38 monoclonal antibody (daratumumab) was approved for treatment of patients with multiple myeloma. However, the role of CD38 in non-hematological malignancies has not been explored. Previously, we reported that ADP-ribose-acceptor hydrolase (ARH)-1 deficiency in mice was associated with tumor development. In the present study, we found that in wild-type and ARH1-deficient mice deletion of the CD38 gene reduced tumor formation. Significant reductions in tumor number were observed in lymphomas, adenocarcinomas and hemangio/histolytic sarcomas. Consistent with a role for CD38 in tumorigenesis, CRISPR/Cas9-based knockout of CD38 in A549 human adenocarcinoma cells inhibited anchorage-independent cell growth, cell invasion and xenograft growth in nude mice. CD38 mRNA and protein expression were evaluated in human lung cancer cell lines and in human lung cancer specimens. CD38 overexpression in tumor cells was identified in 11 of 27 patient samples. In addition, some human lung cancer cell lines had dramatically higher CD38 mRNA and protein expression than normal cells. Consistent with these observations, search of the Oncomine database showed that some human lung adenocarcinomas had higher CD38 mRNA levels compared to normal lung tissues. In total, our data are consistent with the conclusion that CD38 plays a role in murine and human lung tumorigenesis and that anti-CD38 treatment may have therapeutic potential in lung cancer.

摘要

质膜外切酶 CD38 的胞外结构域通过催化 NAD 转化为烟酰胺和 ADP-核糖或环状 ADP-核糖,分别发挥 NAD 糖基水解酶和 ADP-核糖基环化酶的功能。CD38 在癌症治疗中引起了特别关注。一种抗 CD38 单克隆抗体(达雷妥尤单抗)已被批准用于治疗多发性骨髓瘤患者。然而,CD38 在非血液恶性肿瘤中的作用尚未得到探索。先前,我们报道了小鼠中 ADP-核糖-受体水解酶 (ARH)-1 缺陷与肿瘤发生有关。在本研究中,我们发现在野生型和 ARH1 缺陷型小鼠中,CD38 基因的缺失减少了肿瘤形成。在淋巴瘤、腺癌和血管/组织细胞肉瘤中观察到肿瘤数量的显著减少。与 CD38 在肿瘤发生中的作用一致,CRISPR/Cas9 敲除 A549 人腺癌细胞中的 CD38 抑制了锚定非依赖性细胞生长、细胞侵袭和裸鼠异种移植物生长。评估了 CD38 在人肺癌细胞系和人肺癌标本中的 mRNA 和蛋白表达。在 27 个患者样本中的 11 个样本中发现肿瘤细胞中 CD38 mRNA 表达上调。此外,一些人肺癌细胞系的 CD38 mRNA 和蛋白表达水平明显高于正常细胞。与这些观察结果一致,对 Oncomine 数据库的搜索表明,一些人肺腺癌的 CD38 mRNA 水平高于正常肺组织。总的来说,我们的数据与结论一致,即 CD38 参与了小鼠和人肺肿瘤的发生,抗 CD38 治疗可能对肺癌具有治疗潜力。

相似文献

1
CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells.
Carcinogenesis. 2018 Feb 9;39(2):242-251. doi: 10.1093/carcin/bgx137.
2
COPB2 promotes cell proliferation and tumorigenesis through up-regulating YAP1 expression in lung adenocarcinoma cells.
Biomed Pharmacother. 2018 Jul;103:373-380. doi: 10.1016/j.biopha.2018.04.006. Epub 2018 Apr 24.
3
The intrinsic role and mechanism of tumor expressed-CD38 on lung adenocarcinoma progression.
Cell Death Dis. 2021 Jul 5;12(7):680. doi: 10.1038/s41419-021-03968-2.
4
CD38 as a PET Imaging Target in Lung Cancer.
Mol Pharm. 2017 Jul 3;14(7):2400-2406. doi: 10.1021/acs.molpharmaceut.7b00298. Epub 2017 Jun 8.
5
Targeting of CD38 by the Tumor Suppressor miR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma.
Cancer Res. 2020 May 15;80(10):2031-2044. doi: 10.1158/0008-5472.CAN-19-1077. Epub 2020 Mar 19.
6
Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways.
Biochem Pharmacol. 2019 Sep;167:44-49. doi: 10.1016/j.bcp.2018.09.028. Epub 2018 Sep 27.
7
CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.
Neurochem Res. 2017 Jan;42(1):283-293. doi: 10.1007/s11064-016-2031-9. Epub 2016 Aug 12.
8
Human CD38 is an authentic NAD(P)+ glycohydrolase.
Biochem J. 1998 Mar 15;330 ( Pt 3)(Pt 3):1383-90. doi: 10.1042/bj3301383.
9
Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38-deficient mice.
J Biol Chem. 2003 Oct 17;278(42):40670-8. doi: 10.1074/jbc.M301196200. Epub 2003 Aug 8.
10
CD38 in cancer-associated fibroblasts promotes pro-tumoral activity.
Lab Invest. 2020 Dec;100(12):1517-1531. doi: 10.1038/s41374-020-0458-8. Epub 2020 Jul 1.

引用本文的文献

1
Causality between gut microbiota, immune cells, and breast cancer: Mendelian randomization analysis.
Medicine (Baltimore). 2024 Dec 6;103(49):e40815. doi: 10.1097/MD.0000000000040815.
2
CD38 as theranostic target in oncology.
J Transl Med. 2024 Nov 5;22(1):998. doi: 10.1186/s12967-024-05768-6.
3
The Novel-B-Cell-Related Gene Signature Predicts the Prognosis and Immune Status of Patients with Esophageal Carcinoma.
J Gastrointest Cancer. 2024 Sep;55(3):1313-1323. doi: 10.1007/s12029-024-01083-x. Epub 2024 Jul 4.
4
Comprehensive proteomic profiling of lung adenocarcinoma: development and validation of an innovative prognostic model.
Transl Cancer Res. 2024 May 31;13(5):2187-2207. doi: 10.21037/tcr-23-1940. Epub 2024 May 29.
5
Lactate drives CD38 signaling to promote Epithelial-Mesenchymal Transition through Snail induction in non-small cell lung cancer cells.
J Cell Commun Signal. 2024 Feb 14;18(1):e12018. doi: 10.1002/ccs3.12018. eCollection 2024 Mar.
6
Role of CD38 in anti-tumor immunity of small cell lung cancer.
Front Immunol. 2024 Mar 12;15:1348982. doi: 10.3389/fimmu.2024.1348982. eCollection 2024.
7
Overexpression of circulating CD38+ NK cells in colorectal cancer was associated with lymph node metastasis and poor prognosis.
Front Oncol. 2024 Feb 23;14:1309785. doi: 10.3389/fonc.2024.1309785. eCollection 2024.
8
Applications and advancements of CRISPR-Cas in the treatment of lung cancer.
Front Cell Dev Biol. 2023 Dec 11;11:1295084. doi: 10.3389/fcell.2023.1295084. eCollection 2023.
9
Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing.
Mol Biotechnol. 2024 Nov;66(11):3092-3116. doi: 10.1007/s12033-023-00932-7. Epub 2023 Nov 27.

本文引用的文献

1
Cytosolic interaction of type III human CD38 with CIB1 modulates cellular cyclic ADP-ribose levels.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8283-8288. doi: 10.1073/pnas.1703718114. Epub 2017 Jul 18.
4
CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets.
Pharmacol Ther. 2017 Apr;172:116-126. doi: 10.1016/j.pharmthera.2016.12.002. Epub 2016 Dec 7.
5
Biosensor reveals multiple sources for mitochondrial NAD⁺.
Science. 2016 Jun 17;352(6292):1474-7. doi: 10.1126/science.aad5168.
6
CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.
Cell Metab. 2016 Jun 14;23(6):1127-1139. doi: 10.1016/j.cmet.2016.05.006.
7
Gene aberrations for precision medicine against lung adenocarcinoma.
Cancer Sci. 2016 Jun;107(6):713-20. doi: 10.1111/cas.12941. Epub 2016 May 25.
8
Quality of life of patients with lung cancer.
Onco Targets Ther. 2016 Feb 29;9:1023-8. doi: 10.2147/OTT.S100685. eCollection 2016.
9
Scientific Advances in Lung Cancer 2015.
J Thorac Oncol. 2016 May;11(5):613-638. doi: 10.1016/j.jtho.2016.03.012. Epub 2016 Mar 22.
10
Monoclonal antibodies targeting CD38 in hematological malignancies and beyond.
Immunol Rev. 2016 Mar;270(1):95-112. doi: 10.1111/imr.12389.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验