Gsib Olfat, Duval Jean-Luc, Goczkowski Mathieu, Deneufchatel Marie, Fichet Odile, Larreta-Garde Véronique, Bencherif Sidi Ahmed, Egles Christophe
Laboratoire de BioMécanique et de BioIngénierie (BMBI) UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne (UTC), 60200 Compiègne, France.
Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (Errmece), Institut des Matériaux, Université de Cergy-Pontoise, 95000 Cergy-Pontoise, France.
Nanomaterials (Basel). 2017 Dec 10;7(12):436. doi: 10.3390/nano7120436.
Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.
互穿聚合物网络(IPN)由于其相较于单独的单个组分具有改进的性能,在许多生物医学应用中受到了极大关注。在本研究中,我们研究了新开发的天然来源的IPN作为组织工程潜在生物材料的能力。这些IPN结合了在纳米尺度聚合的纤维蛋白网络的生物学特性和聚环氧乙烷(PEO)的机械稳定性。首先,我们在体外评估了它们对L929成纤维细胞的细胞毒性。我们进一步使用鸡胚器官型培养模型在体外评估了它们的生物相容性。随后在裸鼠上进行了基质的皮下植入,以研究它们在体内的生物相容性。我们的初步数据表明,我们的生物材料无细胞毒性(存活率高于90%)。器官型培养表明,与对照组相比,IPN基质诱导了更高的细胞粘附(在所有外植器官组织中)和迁移(皮肤、肠道),这表明使用基于仿生但机械增强的IPN基质的优势。在植入后长达12周的时间里,我们未观察到明显的炎症反应。总之,这些数据表明这些基于纤维蛋白的IPN是用于组织工程的有前景的生物材料。