Alsohemi Rahaf, Dardouri Samia
Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11911, Saudi Arabia.
InnoV'COM Laboratory-Sup'Com, University of Carthage, Ariana 2083, Tunisia.
J Imaging. 2025 Aug 19;11(8):279. doi: 10.3390/jimaging11080279.
Accurate and early classification of retinal diseases such as diabetic retinopathy, cataract, and glaucoma is essential for preventing vision loss and improving clinical outcomes. Manual diagnosis from fundus images is often time-consuming and error-prone, motivating the development of automated solutions. This study proposes a deep learning-based classification model using a pretrained EfficientNetB3 architecture, fine-tuned on a publicly available Kaggle retinal image dataset. The model categorizes images into four classes: cataract, diabetic retinopathy, glaucoma, and healthy. Key enhancements include transfer learning, data augmentation, and optimization via the Adam optimizer with a cosine annealing scheduler. The proposed model achieved a classification accuracy of 95.12%, with a precision of 95.21%, recall of 94.88%, F1-score of 95.00%, Dice Score of 94.91%, Jaccard Index of 91.2%, and an MCC of 0.925. These results demonstrate the model's robustness and potential to support automated retinal disease diagnosis in clinical settings.
准确且早期地对糖尿病视网膜病变、白内障和青光眼等视网膜疾病进行分类,对于预防视力丧失和改善临床结果至关重要。从眼底图像进行人工诊断通常既耗时又容易出错,这推动了自动化解决方案的发展。本研究提出了一种基于深度学习的分类模型,该模型使用预训练的EfficientNetB3架构,并在公开可用的Kaggle视网膜图像数据集上进行微调。该模型将图像分为四类:白内障、糖尿病视网膜病变、青光眼和健康。关键改进包括迁移学习、数据增强以及通过带有余弦退火调度器的Adam优化器进行优化。所提出的模型实现了95.12%的分类准确率,精确率为95.21%,召回率为94.88%,F1分数为95.00%,Dice分数为94.91%,Jaccard指数为91.2%,马修斯相关系数为0.925。这些结果证明了该模型在临床环境中支持自动化视网膜疾病诊断的稳健性和潜力。