Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate School , 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
ACS Appl Mater Interfaces. 2018 Jan 10;10(1):219-226. doi: 10.1021/acsami.7b15396. Epub 2017 Dec 22.
Large-scale plasmonic substrates consisting of metal-insulator nanostructures coated with a biorecognition layer can be exploited for enhanced label-free sensing by utilizing the principle of localized surface plasmon resonance (LSPR). Most often, the uniformity and thickness of the biorecognition layer determine the sensitivity of plasmonic resonances as the inherent LSPR sensitivity of nanomaterials is limited to 10-20 nm from the surface. However, because of time-consuming nanofabrication processes, there is limited work on both the development of large-scale plasmonic materials and the subsequent surface functionalizing with biorecognition layers. In this work, by exploiting properties of reactive ions in an SF plasma environment, we are able to develop a nanoplasmonic substrate containing ∼10/cm mushroom-like structures on a large-sized silicon dioxide substrate (i.e., 2.5 cm by 7.5 cm). We further investigate the underlying mechanism of the nanoassembly of gold on glass inside the plasma environment, which can be expanded to a variety of metal-insulator systems. By incorporating a novel microcontact printing technique, we deposit a highly uniform biorecognition layer of proteins on the nanoplasmonic substrate. The bioplasmonic assays performed on these substrates achieve a limit of detection of 10 g/mL (∼66 zM) for biomolecules such as antibodies (∼150 kDa). Our simple nanofabrication procedure opens new opportunities in fabricating versatile bioplasmonic materials for a wide range of biomedical and sensing applications.
由涂覆有生物识别层的金属-绝缘体纳米结构组成的大规模等离子体基片可以通过利用局域表面等离子体共振(LSPR)原理来增强无标记传感。通常,生物识别层的均匀性和厚度决定了等离子体共振的灵敏度,因为纳米材料的固有 LSPR 灵敏度限于从表面的 10-20nm。然而,由于耗时的纳米制造工艺,在大规模等离子体材料的开发以及随后用生物识别层进行表面功能化方面的工作都很有限。在这项工作中,我们利用 SF 等离子体环境中的反应离子的特性,在大尺寸二氧化硅基底(即 2.5cm×7.5cm)上开发了一种含有约 10/cm 蘑菇状结构的纳米等离子体基底。我们进一步研究了等离子体环境中玻璃内部金的纳米组装的潜在机制,该机制可以扩展到各种金属-绝缘体系统。通过引入一种新颖的微接触印刷技术,我们在纳米等离子体基底上沉积了高度均匀的生物识别层蛋白质。在这些基底上进行的生物等离子体分析实现了对生物分子(如抗体(约 150kDa))的检测限为 10μg/mL(约 66zM)。我们的简单纳米制造工艺为各种生物医学和传感应用的多功能生物等离子体材料的制造开辟了新的机会。