Suppr超能文献

使用无监督机器学习算法在演化的金属-绝缘体几何结构中支持一种隐藏的等离子体模式以增强局域表面等离子体共振(LSPR)传感性能。

Endorsing a Hidden Plasmonic Mode for Enhancement of LSPR Sensing Performance in Evolved Metal-insulator Geometry Using an Unsupervised Machine Learning Algorithm.

作者信息

Bhalla Nikhil, Thakur Atul, Edelman Irina S, Ivantsov Ruslan D

机构信息

Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown, Shore Road, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom.

Healthcare Technology Hub, Ulster University, Jordanstown, Shore Road, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom.

出版信息

ACS Phys Chem Au. 2022 Sep 1;2(6):459-467. doi: 10.1021/acsphyschemau.2c00033. eCollection 2022 Nov 23.

Abstract

Large-area nanoplasmonic structures with pillared metal-insulator geometry, also called nanomushrooms (NM), consist of an active spherical-shaped plasmonic material such as gold as its cap and silicon dioxide as its stem. NM is a geometry which evolves from its precursor, nanoislands (NI) consisting of aforementioned spherical structures on flat silicon dioxide substrates, via selective physical or chemical etching of the silicon dioxide. The NM geometry is well-known to provide enhanced localized surface plasmon resonance (LSPR) sensitivity in biosensing applications as compared to NI. However, precise optical phenomenon behind this enhancement is unknown and often associated with the existence of electric fields in the large fraction of the spatial region between the pillars of NM, usually accessible by the biomolecules. Here, we uncover the association of LSPR enhancement in such geometries with a hidden plasmonic mode by conducting magneto-optics measurements and by deconvoluting the absorbance spectra obtained during the local refractive index change of the NM and NI geometries. By the virtue of principal component analysis, an unsupervised machine learning technique, we observe an explicit relationship between the deconvoluted modes of LSPR, the differential absorption of left and right circular polarized light, and the refractive index sensitivity of the LSPR sensor. Our findings may lead to the development of new approaches to extract unknown properties of plasmonic materials or establish new fundamental relationships between less understood photonic properties of nanomaterials.

摘要

具有柱状金属-绝缘体几何结构的大面积纳米等离子体结构,也称为纳米蘑菇(NM),由活性球形等离子体材料(如金作为帽部)和二氧化硅作为茎部组成。NM是一种几何结构,它从其前体——纳米岛(NI)演变而来,纳米岛由平坦二氧化硅衬底上的上述球形结构组成,通过对二氧化硅进行选择性物理或化学蚀刻得到。众所周知,与NI相比,NM几何结构在生物传感应用中能提供增强的局域表面等离子体共振(LSPR)灵敏度。然而,这种增强背后的确切光学现象尚不清楚,并且通常与NM柱之间大部分空间区域中存在的电场有关,生物分子通常可以进入该区域。在这里,我们通过进行磁光测量以及对NM和NI几何结构在局部折射率变化期间获得的吸收光谱进行反褶积,揭示了这种几何结构中LSPR增强与一种隐藏的等离子体模式之间的关联。借助主成分分析(一种无监督机器学习技术),我们观察到LSPR的反褶积模式、左旋和右旋圆偏振光的差分吸收以及LSPR传感器的折射率灵敏度之间存在明确的关系。我们的发现可能会导致开发新方法来提取等离子体材料的未知特性,或在对纳米材料了解较少的光子特性之间建立新的基本关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89b5/9955251/bfb20e891af2/pg2c00033_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验