Suppr超能文献

面外3D打印微纤维改善水凝胶复合材料的剪切性能。

Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Composites.

作者信息

de Ruijter Mylène, Hrynevich Andrei, Haigh Jodie N, Hochleitner Gernot, Castilho Miguel, Groll Jürgen, Malda Jos, Dalton Paul D

机构信息

Department of Orthopedics, University Medical Center, Utrecht University, P.O. Box 85500, 3508, GA, Utrecht, The Netherlands.

Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.

出版信息

Small. 2018 Feb;14(8). doi: 10.1002/smll.201702773. Epub 2017 Dec 14.

Abstract

One challenge in biofabrication is to fabricate a matrix that is soft enough to elicit optimal cell behavior while possessing the strength required to withstand the mechanical load that the matrix is subjected to once implanted in the body. Here, melt electrowriting (MEW) is used to direct-write poly(ε-caprolactone) fibers "out-of-plane" by design. These out-of-plane fibers are specifically intended to stabilize an existing structure and subsequently improve the shear modulus of hydrogel-fiber composites. The stabilizing fibers (diameter = 13.3 ± 0.3 µm) are sinusoidally direct-written over an existing MEW wall-like structure (330 µm height). The printed constructs are embedded in different hydrogels (5, 10, and 15 wt% polyacrylamide; 65% poly(2-hydroxyethyl methacrylate) (pHEMA)) and a frequency sweep test (0.05-500 rad s , 0.01% strain, n = 5) is performed to measure the complex shear modulus. For the rheological measurements, stabilizing fibers are deposited with a radial-architecture prior to embedding to correspond to the direction of the stabilizing fibers with the loading of the rheometer. Stabilizing fibers increase the complex shear modulus irrespective of the percentage of gel or crosslinking density. The capacity of MEW to produce well-defined out-of-plane fibers and the ability to increase the shear properties of fiber-reinforced hydrogel composites are highlighted.

摘要

生物制造中的一个挑战是制造一种基质,该基质要足够柔软以引发最佳的细胞行为,同时又要具备承受植入体内后基质所承受的机械负荷所需的强度。在此,通过设计采用熔体静电纺丝(MEW)将聚(ε-己内酯)纤维“面外”直接写入。这些面外纤维专门用于稳定现有结构,并随后提高水凝胶-纤维复合材料的剪切模量。稳定纤维(直径 = 13.3 ± 0.3 µm)以正弦形式直接写入现有的类MEW壁状结构(高度为330 µm)上。将打印好的构建体嵌入不同的水凝胶(5%、10%和15%重量百分比的聚丙烯酰胺;65%的聚(甲基丙烯酸2-羟乙酯)(pHEMA))中,并进行频率扫描测试(0.05 - 500 rad s,0.01%应变,n = 5)以测量复数剪切模量。对于流变学测量,在嵌入之前以径向结构沉积稳定纤维,使其与流变仪加载时稳定纤维的方向一致。无论凝胶百分比或交联密度如何,稳定纤维都会增加复数剪切模量。突出了熔体静电纺丝产生明确面外纤维的能力以及提高纤维增强水凝胶复合材料剪切性能的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e02/7116177/59e8ab051461/EMS96590-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验