Huynh Quan, Negishi Kazuaki, De Pasquale Carmine G, Hare James L, Leung Dominic, Stanton Tony, Marwick Thomas H
Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
Cardiac Services, Flinders Medical Centre, South Australia, Australia.
Am J Cardiol. 2018 Feb 1;121(3):322-329. doi: 10.1016/j.amjcard.2017.10.031. Epub 2017 Oct 31.
Existing prediction algorithms for the identification of patients with heart failure (HF) at high risk of readmission or death after hospital discharge are only modestly effective. We sought to validate a recently developed predictive model of 30-day readmission or death in HF using an Australia-wide sample of patients. This study used data from 1,046 patients with HF at teaching hospitals in 5 Australian capital cities to validate a predictive model of 30-day readmission or death in HF. Besides standard clinical and administrative data, we collected data on individual sociodemographic and socioeconomic status, mental health (Patient Health Questionnaire [PHQ]-9 and Generalized Anxiety Disorder [GAD]-7 scale score), cognitive function (Montreal Cognitive Assessment [MoCA] score), and 2-dimensional echocardiograms. The original sample used to develop the predictive model and the validation sample had similar proportions of patients with an adverse event within 30 days (30% vs 29%, p = 0.35) and 90 days (52% vs 49%, p = 0.36). Applying the predicted risk score to the validation sample provided very good discriminatory power (C-statistic = 0.77) in the prediction of 30-day readmission or death. This discrimination was greater for predicting 30-day death (C-statistic = 0.85) than for predicting 30-day readmission (C-statistic = 0.73). There was a small difference in the performance of the predictive model among patients with either a left ventricular ejection fraction of <40% or a left ventricular ejection fraction of ≥40%, but an attenuation in discrimination when used to predict longer-term adverse outcomes. In conclusion, our findings confirm the generalizability of the predictive model that may be a powerful tool for targeting high-risk patients with HF for intensive management.
现有的用于识别出院后有再入院或死亡高风险的心力衰竭(HF)患者的预测算法效果一般。我们试图使用澳大利亚全国范围的患者样本,验证一种最近开发的HF患者30天再入院或死亡预测模型。本研究使用了来自澳大利亚5个首府城市教学医院的1046例HF患者的数据,以验证HF患者30天再入院或死亡的预测模型。除了标准的临床和管理数据外,我们还收集了个体社会人口学和社会经济状况、心理健康(患者健康问卷[PHQ]-9和广泛性焦虑障碍[GAD]-7量表评分)、认知功能(蒙特利尔认知评估[MoCA]评分)以及二维超声心动图的数据。用于开发预测模型的原始样本和验证样本中,30天内发生不良事件的患者比例相似(30%对29%,p = 0.35),90天内发生不良事件的患者比例也相似(52%对49%,p = 0.36)。将预测风险评分应用于验证样本,在预测30天再入院或死亡方面具有很好的鉴别能力(C统计量 = 0.77)。预测30天死亡的鉴别能力(C统计量 = 0.85)大于预测30天再入院的鉴别能力(C统计量 = 0.73)。左心室射血分数<40%或左心室射血分数≥40%的患者中,预测模型的性能存在微小差异,但用于预测长期不良结局时鉴别能力会减弱。总之,我们的研究结果证实了该预测模型的可推广性,它可能是针对HF高危患者进行强化管理的有力工具。