Department of Interdisciplinary Endoscopy, I. Medizinische Klinik und Poliklinik, University Hospital, Mainz, Germany.
GastroZentrum Lippe, Bad Salzuflen, Germany.
PLoS One. 2021 Aug 26;16(8):e0255955. doi: 10.1371/journal.pone.0255955. eCollection 2021.
Linked color imaging (LCI) has been shown to be effective in multiple randomized controlled trials for enhanced colorectal polyp detection. Recently, artificial intelligence (AI) with deep learning through convolutional neural networks has dramatically improved and is increasingly recognized as a promising new technique for enhancing colorectal polyp detection.
This study aims to evaluate a newly developed computer-aided detection (CAD) system in combination with LCI for colorectal polyp detection.
First, a convolutional neural network was trained for colorectal polyp detection in combination with the LCI technique using a dataset of anonymized endoscopy videos. For validation, 240 polyps within fully recorded endoscopy videos in LCI mode, covering the entire spectrum of adenomatous histology, were used. Sensitivity (true-positive rate per lesion) and false-positive frames in a full procedure were assessed.
The new CAD system used in LCI mode could process at least 60 frames per second, allowing for real-time video analysis. Sensitivity (true-positive rate per lesion) was 100%, with no lesion being missed. The calculated false-positive frame rate was 0.001%. Among the 240 polyps, 34 were sessile serrated lesions. The detection rate for sessile serrated lesions with the CAD system used in LCI mode was 100%.
The new CAD system used in LCI mode achieved a 100% sensitivity per lesion and a negligible false-positive frame rate. Note that the new CAD system used in LCI mode also specifically allowed for detection of serrated lesions in all cases. Accordingly, the AI algorithm introduced here for the first time has the potential to dramatically improve the quality of colonoscopy.
已有研究表明,在多个随机对照试验中,联合使用蓝激光成像(LCI)技术可以有效提高结直肠息肉的检出率。最近,基于卷积神经网络的人工智能(AI)技术得到了显著发展,被认为是提高结直肠息肉检出率的一种很有前途的新技术。
本研究旨在评估一种新开发的联合 LCI 技术的计算机辅助检测(CAD)系统在结直肠息肉检测中的性能。
首先,使用包含匿名内镜视频的数据集,通过卷积神经网络对联合 LCI 技术的结直肠息肉检测进行训练。为了验证,我们在 LCI 模式下使用 240 个息肉全记录内镜视频,涵盖了所有腺瘤性组织学特征的息肉。评估了整个过程中的敏感性(每例病变的真阳性率)和假阳性帧数。
新的 CAD 系统在 LCI 模式下的处理速度至少可达 60 帧/秒,可以实现实时视频分析。敏感性(每例病变的真阳性率)为 100%,无病变漏诊。计算得出的假阳性帧数率为 0.001%。在 240 个息肉中,有 34 个为无蒂锯齿状病变。CAD 系统在 LCI 模式下对无蒂锯齿状病变的检出率为 100%。
新的 CAD 系统在 LCI 模式下实现了 100%的每例病变敏感性和可忽略不计的假阳性帧数率。值得注意的是,新的 CAD 系统在 LCI 模式下还可以特异性地检测所有情况下的锯齿状病变。因此,这里首次引入的 AI 算法有可能显著提高结肠镜检查的质量。