文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

螺吡喃/螺恶嗪及其基于荧光共振能量转移(FRET)的荧光材料应用的研究进展。

Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.

机构信息

Guangdong Provincial Key Laboratory of Micro-nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Anhui 230026, China.

出版信息

Molecules. 2017 Dec 18;22(12):2236. doi: 10.3390/molecules22122236.


DOI:10.3390/molecules22122236
PMID:29258220
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6149790/
Abstract

Studies on the following were reviewed: (1) the structure of spiropyrans and spirooxazines (two kinds of spiro compounds) under external stimuli and (2) the construction and applications of composite systems based on fluorescence resonance energy transfer (FRET) with fluorescent materials. When treated with different stimuli (light, acids and bases, solvents, metal ions, temperature, redox potential, and so on), spiropyrans/spirooxazines undergo transformations between the ring-closed form (SP), the ring-opened merocyanine (MC) form, and the protonated ring-opened form (MCH). This is due to the breakage of the spiro C-O bond and the protonation of MC, along with a color change. Various novel, multifunctional materials based on photochromic spiropyrans and spirooxazines have been successfully developed because of the vastly differently physiochemical properties posssed by the SP, MC and MCH forms. Among the three different structural forms, the MC form has been studied most extensively. The MC form not only gives complexes with various inorganic particles, biological molecules, and organic chemicals but also acts as the energy acceptor (of energy from fluorescent molecules) during energy transfer processes that take place under proper conditions. Furthermore, spiropyran and spirooxazine compounds exhibit reversible physicochemical property changes under proper stimuli; this provides more advantages compared with other photochromic compounds. Additionally, the molecular structures of spiropyrans and spirooxazines can be easily modified and extended, so better compounds can be obtained to expand the scope of already known applications. Described in detail are: (1) the structural properties of spiropyrans and spirooxazines and related photochromic mechanisms; (2) composite systems based on spiropyrans and spirooxazines, and (3) fluorescent materials which have potential applications in sensing, probing, and a variety of optical elements.

摘要

研究了以下内容:(1)在外部刺激下螺吡喃和螺噁嗪(两种螺环化合物)的结构;(2)基于荧光共振能量转移(FRET)的荧光材料的复合体系的构建和应用。螺吡喃/螺噁嗪在受到不同刺激(光、酸和碱、溶剂、金属离子、温度、氧化还原电位等)时,会发生闭环形式(SP)、开环的螺内酰胺(MC)形式和质子化的开环形式(MCH)之间的转变。这是由于螺 C-O 键的断裂和 MC 的质子化以及颜色的变化。由于 SP、MC 和 MCH 形式具有截然不同的物理化学性质,成功开发了各种基于光致变色螺吡喃和螺噁嗪的新型多功能材料。在这三种不同的结构形式中,MC 形式的研究最为广泛。MC 形式不仅与各种无机颗粒、生物分子和有机化学品形成配合物,而且在适当条件下作为能量转移过程中的能量受体(从荧光分子吸收能量)。此外,螺吡喃和螺噁嗪化合物在适当的刺激下表现出可逆的物理化学性质变化;与其他光致变色化合物相比,这提供了更多的优势。此外,螺吡喃和螺噁嗪的分子结构可以很容易地进行修饰和扩展,因此可以获得更好的化合物来扩展已知应用的范围。详细描述了:(1)螺吡喃和螺噁嗪的结构特性和相关光致变色机制;(2)基于螺吡喃和螺噁嗪的复合体系;(3)在传感、探测和各种光学元件中有潜在应用的荧光材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/1c4219171ebe/molecules-22-02236-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/8713e037b2b1/molecules-22-02236-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/ca651cb6b21c/molecules-22-02236-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/14dccd398390/molecules-22-02236-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/342ec7f7a997/molecules-22-02236-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/2a0471318f6b/molecules-22-02236-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/f8a9b6b86d79/molecules-22-02236-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/7f8f1feec869/molecules-22-02236-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/7a5294a65c20/molecules-22-02236-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/1476663b9e1e/molecules-22-02236-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/1c4219171ebe/molecules-22-02236-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/8713e037b2b1/molecules-22-02236-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/ca651cb6b21c/molecules-22-02236-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/14dccd398390/molecules-22-02236-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/342ec7f7a997/molecules-22-02236-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/2a0471318f6b/molecules-22-02236-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/f8a9b6b86d79/molecules-22-02236-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/7f8f1feec869/molecules-22-02236-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/7a5294a65c20/molecules-22-02236-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/1476663b9e1e/molecules-22-02236-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0b/6149790/1c4219171ebe/molecules-22-02236-g007.jpg

相似文献

[1]
Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.

Molecules. 2017-12-18

[2]
Photocontrol of ion permeation in lipid vesicles with (bola)amphiphilic spirooxazines.

Org Biomol Chem. 2016-1-7

[3]
Computational study of the mechanism of the photochemical and thermal ring-opening/closure reactions and solvent dependence in spirooxazines.

J Phys Chem A. 2012-7-31

[4]
CO2 triggering and controlling orthogonally multiresponsive photochromic systems.

J Am Chem Soc. 2010-8-11

[5]
X-ray, kinetics and DFT studies of photochromic substituted benzothiazolinic spiropyrans.

J Mol Struct. 2010-4-1

[6]
Probing Metal Ion Complexation of Ligands with Multiple Metal Binding Sites: The Case of Spiropyrans.

Chemistry. 2016-9-19

[7]
Chemo- and biosensing applications of spiropyran and its derivatives - A review.

Anal Chim Acta. 2020-1-27

[8]
Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application.

J Fluoresc. 2016-11

[9]
Photochromic spirooxazines functionalized with oligomers: investigation of core-oligomer interactions and photomerocyanine isomer interconversion using NMR spectroscopy and DFT.

J Org Chem. 2010-5-7

[10]
Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines.

J Org Chem. 2016-9-21

引用本文的文献

[1]
Expanding Horizons in Advancements of FRET Biosensing Technologies.

Biosensors (Basel). 2025-7-14

[2]
Photokinetics of Photothermal Reactions.

Molecules. 2025-1-15

[3]
Phase-change VO-based thermochromic smart windows.

Light Sci Appl. 2024-9-18

[4]
Recent Advances in Photoswitchable Fluorescent and Colorimetric Probes.

Molecules. 2024-5-27

[5]
Ti-based MOFs with acetic acid pendings as an efficient catalyst in the preparation of new spiropyrans with biological moieties.

Sci Rep. 2024-6-19

[6]
Photoswitchable Photochromic Chelating Spironaphthoxazines: Synthesis, Photophysical Properties, Quantum-Chemical Calculations, and Complexation Ability.

ACS Omega. 2024-1-12

[7]
Recent synthetic strategies of spiro-azetidin-2-one, -pyrrolidine, -indol(one) and -pyran derivatives-a review.

RSC Adv. 2023-11-7

[8]
Washable and stretchable fiber with heat and ultraviolet color conversion.

RSC Adv. 2022-8-10

[9]
Chiral Luminescent Liquid Crystal with Multi-State-Reversibility: Breakthrough in Advanced Anti-Counterfeiting Materials.

Adv Sci (Weinh). 2022-7

[10]
Simple Preparation of Photoluminescent and Color-Tunable Polyester Resin Blended with Alkaline-Earth-Activated Aluminate Nanoparticles.

ACS Omega. 2022-3-17

本文引用的文献

[1]
A high fatigue resistant, photoswitchable fluorescent spiropyran-polyoxometalate-BODIPY single-molecule.

Chem Commun (Camb). 2015-11-18

[2]
Light-controlled self-assembly of non-photoresponsive nanoparticles.

Nat Chem. 2015-7-20

[3]
A photochromic sensor microchip for high-performance multiplex metal ions detection.

Sci Rep. 2015-4-8

[4]
Photoactivatable BODIPYs designed to monitor the dynamics of supramolecular nanocarriers.

J Am Chem Soc. 2015-4-1

[5]
Optical nanoimaging for block copolymer self-assembly.

J Am Chem Soc. 2015-2-13

[6]
Optical modulation of waveguiding in spiropyran-functionalized polydiacetylene microtube.

ACS Appl Mater Interfaces. 2014-9-10

[7]
Photoelectric conversion based on proton-coupled electron transfer reactions.

J Am Chem Soc. 2014-5-20

[8]
Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane.

Nat Chem. 2014-2-2

[9]
Synthesis, characterization, and photophysical properties of Bodipy-spirooxazine and -spiropyran conjugates: modulation of fluorescence resonance energy transfer behavior via acidochromic and photochromic switching.

ACS Appl Mater Interfaces. 2014-2-12

[10]
A reversible multi-stimuli-responsive fluorescence probe and the design for combinational logic gate operations.

Macromol Rapid Commun. 2014-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索