Leonhardt Aljoscha, Meier Matthias, Serbe Etienne, Eichner Hubert, Borst Alexander
Max-Planck-Institute for Neurobiology, Martinsried, Germany.
Graduate School for Systemic Neurosciences, Munich, Germany.
PLoS One. 2017 Dec 20;12(12):e0189019. doi: 10.1371/journal.pone.0189019. eCollection 2017.
Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics.
视觉错觉为描绘视觉处理背后的算法和神经回路提供了强大工具,通过非典型功能揭示结构。在运动检测研究中,特别值得注意的是反向-phi错觉。当对比度反转伴随离散运动时,检测到的方向往往会反转。这种现象在广泛的生物体中都存在,包括人类和无脊椎动物。在这里,我们将该现象的算法解释映射到果蝇黑腹果蝇的神经回路上。通过对系留行走果蝇进行靶向沉默实验以及电生理学和钙成像,我们证明了ON或OFF选择性局部运动检测细胞T4和T5对ON和OFF之间的某些相互作用敏感。一个生物学上合理的检测器模型解释了这种特殊形式的错觉运动反转的微妙特征,比如在极端刺激速度下出现的转向反应的再次反转。鉴于哺乳动物视网膜中类似的电路结构,我们认为类似的机制甚至可能适用于人类心理物理学。