Haag Juergen, Arenz Alexander, Serbe Etienne, Gabbiani Fabrizio, Borst Alexander
Max Planck Institute of Neurobiology, Martinsried, Germany.
Baylor College of Medicine, Houston, United States.
Elife. 2016 Aug 9;5:e17421. doi: 10.7554/eLife.17421.
How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.
神经元如何对视觉运动方向变得敏感,是神经计算的一个经典例子。迄今为止,文献中讨论了两种不同的机制:偏好方向增强,即当刺激沿细胞的偏好方向移动时,反应会被放大;零方向抑制,即当刺激沿相反方向(即零方向)移动时,一个信号会抑制对后续信号的反应。在果蝇视叶的处理链中,方向反应首先出现在T4和T5细胞中。在用望远镜对视叶中单个柱进行视觉刺激序列的同时,从单个T4神经元进行记录,我们发现在感受野的不同子区域中这两种机制都在起作用。这一发现解释了在果蝇初级运动感知神经元中已经发现的高度方向选择性,并标志着我们在理解基本运动检测方面迈出了重要一步。