Advanced Analysis Center and ‡Green City Technology Institute, Korea Institute of Science & Technology , Seoul 02792, Korea.
Anal Chem. 2018 Feb 6;90(3):1701-1709. doi: 10.1021/acs.analchem.7b03431. Epub 2018 Jan 10.
Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance the correlation of chemical information from spectroscopic techniques with the physical properties obtained by AFM.
技术进步推动了日益复杂的分析仪器的发展。现在,对样品体积和成分进行全面描述变得非常复杂。在这里,提出了一种基于先进的 3D 数据校正方法的高度改进的样品 3D 描述方法。传统上,二次离子质谱(SIMS)提供样品表面的化学分布。通过连续溅射与 2D 表面投影相结合,可以生成 3D 体积渲染。然而,表面形貌会通过将非平面表面投影到平面图像上来扭曲体积渲染。此外,溅射强烈依赖于被探测的材料。组成的局部变化会影响溅射产率和束致粗糙度,从而改变 3D 渲染。为了避免这些缺点,原子力显微镜(AFM)与 SIMS 的相关性已在先前的研究中被提出,作为 3D 化学描述的解决方案。为了扩展这种方法的适用性,我们开发了一种使用 AFM-飞行时间(ToF)-SIMS 结合经验溅射模型“基于动态模型的体积校正”的方法,用于普遍校正 3D 结构。首先,3D 结构的模拟突出了这种新方法与经典方法相比的巨大优势。然后,我们探索了这种新校正方法在两种类型的样品中的适用性,一种是图案化的金属多层,另一种是呈现表面粗糙度的两嵌段共聚物膜。在这两种情况下,基于动态模型的体积校正都产生了对样品体积和成分的准确 3D 重建。AFM-SIMS 与基于动态模型的体积校正的结合提高了对表面特性的理解。除了基于动态模型的体积校正提供的有用的 3D 化学信息外,该方法还允许我们增强光谱技术的化学信息与 AFM 获得的物理性质之间的相关性。