Suppr超能文献

一种用于探测三维器件的关联飞行时间二次离子质谱/扫描探针显微镜方法

A Correlative ToF-SIMS/SPM Methodology for Probing 3D Devices.

作者信息

Spampinato Valentina, Dialameh Masoud, Franquet Alexis, Fleischmann Claudia, Conard Thierry, van der Heide Paul, Vandervorst Wilfried

机构信息

IMEC, Kapeldreef 75, 3001 Leuven, Belgium.

INRIM, Strada delle Cacce 91, 10135 Turin, Italy.

出版信息

Anal Chem. 2020 Aug 18;92(16):11413-11419. doi: 10.1021/acs.analchem.0c02406. Epub 2020 Aug 6.

Abstract

With the continuous miniaturization and increasing complexity of the devices used in nanotechnology, there is a pressing need for characterization techniques with nm-scale 3D-spatial resolution. Unfortunately, techniques like Secondary Ion Mass Spectrometry (SIMS) fail to reach the required lateral resolution. For this reason, new concepts and approaches, including the combination of different complementary techniques, have been developed in over the past years to try to overcome some of the challenges. Beyond the problem of spatial resolution in a 3D SIMS experiment, one is also faced with the impact of changes in topography during the analysis. These are quite difficult to identify because they originate from the different sputter rates of the various materials and or phases in a heterogeneous system and are notorious at the interfaces between organic and inorganic layers. As each of these materials will erode at a different velocity, accurate 3D-analysis will require means to establish a spatially resolved relation between ion bombardment time and depth. Inevitably such a nonhomogeneous erosion will lead to the development of surface topography. The impact of these effects can be overcome provided one can capture the time and spatially dependent surface erosion (velocity) with high spatial resolution during the course of a profiling experiment. Incorporating a Scanning Probe Microscope (SPM) unit which provides topography measurements with high spatial resolution, into a SIMS tool (e.g., Time of Flight (ToF) SIMS) with means to alternate between SPM and SIMS measurements, is one approach to meet that demand for complementary topographical information allowing accurate 3D chemical imaging. In this paper, the result of integrating a SPM module into a ToF-SIMS system is presented illustrating the improvements in 3D data accuracy which can be obtained when analyzing complex 3D-systems.

摘要

随着纳米技术中使用的设备不断小型化且复杂性日益增加,迫切需要具有纳米级三维空间分辨率的表征技术。不幸的是,诸如二次离子质谱(SIMS)之类的技术无法达到所需的横向分辨率。因此,在过去几年中已经开发了新的概念和方法,包括结合不同的互补技术,以试图克服一些挑战。除了三维SIMS实验中的空间分辨率问题外,分析过程中还面临地形变化的影响。这些很难识别,因为它们源于异质系统中各种材料和/或相的不同溅射速率,并且在有机层和无机层之间的界面处尤为明显。由于这些材料中的每一种都会以不同的速度侵蚀,准确的三维分析将需要建立离子轰击时间与深度之间的空间分辨关系的方法。不可避免地,这种不均匀侵蚀将导致表面形貌的形成。如果能够在剖析实验过程中以高空间分辨率捕获时间和空间相关的表面侵蚀(速度),就可以克服这些影响。将提供高空间分辨率地形测量的扫描探针显微镜(SPM)单元集成到具有在SPM和SIMS测量之间交替功能的SIMS工具(例如飞行时间(ToF)SIMS)中,是满足对互补地形信息的需求以实现准确三维化学成像的一种方法。本文展示了将SPM模块集成到ToF-SIMS系统中的结果,说明了在分析复杂三维系统时可获得的三维数据准确性的提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验