Suppr超能文献

利用二次电子像素强度对 3D NanoSIMS 图像进行深度校正。

Depth correction of 3D NanoSIMS images using secondary electron pixel intensities.

机构信息

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

出版信息

Biointerphases. 2021 Aug 3;16(4):041005. doi: 10.1116/6.0001092.

Abstract

Strategies that do not require additional characterization to be performed on the sample or the collection of additional secondary ion signals are needed to depth correct 3D SIMS images of cells. Here, we develop a depth correction strategy that uses the pixel intensities in the secondary electron images acquired during negative-ion NanoSIMS depth profiling to reconstruct the sample morphology. This morphology reconstruction was then used to depth correct the 3D SIMS images that show the components of interest in the sample. As a proof of concept, we applied this approach to NanoSIMS depth profiling data that show the N-enrichment and O-enrichment from N-sphingolipids and O-cholesterol, respectively, within a metabolically labeled Madin-Darby canine kidney cell. Comparison of the cell morphology reconstruction to the secondary electron images collected with the NanoSIMS revealed that the assumption of a constant sputter rate produced small inaccuracies in sample morphology after approximately 0.66 μm of material was sputtered from the cell. Nonetheless, the resulting 3D renderings of the lipid-specific isotope enrichments better matched the shapes and positions of the subcellular compartments that contained N-sphingolipids and O-cholesterol than the uncorrected 3D SIMS images. This depth correction of the 3D SIMS images also facilitated the detection of spherical cholesterol-rich compartments that were surrounded by membranes containing cholesterol and sphingolipids. Thus, we expect this approach will facilitate identifying the subcellular structures that are enriched with biomolecules of interest in 3D SIMS images while eliminating the need for correlated analyses or additional secondary ion signals for the depth correction of 3D NanoSIMS images.

摘要

需要开发一种不需要对样品或额外二次离子信号进行额外特征化处理的策略,以深度校正细胞的 3D SIMS 图像。在这里,我们开发了一种深度校正策略,该策略使用在负离子 NanoSIMS 深度剖析过程中获取的二次电子图像中的像素强度来重建样品形貌。然后,使用这种形貌重建来深度校正显示样品中感兴趣成分的 3D SIMS 图像。作为概念验证,我们将这种方法应用于 NanoSIMS 深度剖析数据,这些数据分别显示了 N-鞘脂和 O-胆固醇的 N 富集和 O 富集。与用 NanoSIMS 收集的二次电子图像进行比较表明,在从细胞中溅射大约 0.66μm 的材料后,假设恒定的溅射率会导致样品形貌出现小的不准确。尽管如此,脂质特异性同位素富集的三维渲染结果与包含 N-鞘脂和 O-胆固醇的亚细胞区室的形状和位置更好地匹配,而不是未校正的 3D SIMS 图像。这种对 3D SIMS 图像的深度校正还有助于检测被含有胆固醇和鞘脂的膜包围的富含胆固醇的球形隔室。因此,我们预计这种方法将有助于在 3D SIMS 图像中识别富含感兴趣生物分子的亚细胞结构,同时消除对 3D NanoSIMS 图像深度校正的相关分析或额外二次离子信号的需求。

相似文献

本文引用的文献

4
High-Resolution Secondary Ion Mass Spectrometry Analysis of Cell Membranes.细胞膜的高分辨率二次离子质谱分析
Anal Chem. 2020 Jan 21;92(2):1645-1652. doi: 10.1021/acs.analchem.9b04492. Epub 2020 Jan 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验