Suppr超能文献

在饥饿条件下小胶质细胞生物能量机制的多功能性。

Versatility of microglial bioenergetic machinery under starving conditions.

机构信息

Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 1094 Tuzolto st. 37-47, Budapest, Hungary.

Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Szigony st. 43, Budapest, Hungary.

出版信息

Biochim Biophys Acta Bioenerg. 2018 Mar;1859(3):201-214. doi: 10.1016/j.bbabio.2017.12.002. Epub 2017 Dec 19.

Abstract

Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear. In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary - and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies. All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation. It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.

摘要

小胶质细胞是大脑中高度活跃的细胞。它们的功能多样性和表型可塑性使小胶质细胞的能量代谢成为研究的焦点。尽管已知微环境线索会影响小胶质细胞的表型,但它们对局部营养供应的生物能量反应仍不清楚。在本研究中,研究了能量底物对原代和 BV-2 小胶质细胞的氧化和糖酵解代谢的影响。在没有营养物质或存在生理能量底物(谷氨酰胺、葡萄糖、乳酸、丙酮酸或酮体)的情况下,测量了细胞耗氧量、糖酵解活性、细胞内 ATP/ADP 水平、自噬、mTOR 磷酸化、细胞凋亡和细胞活力。所有氧化能量代谢物均增加了基础呼吸和最大呼吸的速率。然而,添加葡萄糖会降低小胶质细胞的氧化代谢,同时增强糖酵解活性。在补充谷氨酰胺的培养基中观察到 ATP/ADP 比值增加和细胞活力增加、mTOR 激活和自噬活性降低。此外,谷氨酰胺高度增强了酮体的适度和短暂氧化,表明 TCA 循环的氨酰化可以刺激酮体的氧化。综上所述,小胶质细胞表现出很高的代谢可塑性,并利用广泛的底物。其中,谷氨酰胺是最有效的代谢物。据我们所知,这些数据首次提供了小胶质细胞在短期饥饿下对营养物质的直接代谢反应的描述,并证明小胶质细胞具有多功能的代谢机制。我们发现小胶质细胞具有独特的生物能量特征,为确定小胶质细胞对大脑能量代谢的贡献提供了关键基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验