Suppr超能文献

双频脑图谱:一种在认知任务执行过程中持续索引心理负荷的新方法。

Dual Frequency Head Maps: A New Method for Indexing Mental Workload Continuously during Execution of Cognitive Tasks.

作者信息

Radüntz Thea

机构信息

Mental Health and Cognitive Capacity, Work and Health, Federal Institute for Occupational Safety and Health, Berlin, Germany.

出版信息

Front Physiol. 2017 Dec 8;8:1019. doi: 10.3389/fphys.2017.01019. eCollection 2017.

Abstract

One goal of advanced information and communication technology is to simplify work. However, there is growing consensus regarding the negative consequences of inappropriate workload on employee's health and the safety of persons. In order to develop a method for continuous mental workload monitoring, we implemented a task battery consisting of cognitive tasks with diverse levels of complexity and difficulty. We conducted experiments and registered the electroencephalogram (EEG), performance data, and the NASA-TLX questionnaire from 54 people. Analysis of the EEG spectra demonstrates an increase of the frontal theta band power and a decrease of the parietal alpha band power, both under increasing task difficulty level. Based on these findings we implemented a new method for monitoring mental workload, the so-called Dual Frequency Head Maps (DFHM) that are classified by support vectors machines (SVMs) in three different workload levels. The results are in accordance with the expected difficulty levels arising from the requirements of the tasks on the executive functions. Furthermore, this article includes an empirical validation of the new method on a secondary subset with new subjects and one additional new task without any adjustment of the classifiers. Hence, the main advantage of the proposed method compared with the existing solutions is that it provides an automatic, continuous classification of the mental workload state without any need for retraining the classifier-neither for new subjects nor for new tasks. The continuous workload monitoring can help ensure good working conditions, maintain a good level of performance, and simultaneously preserve a good state of health.

摘要

先进信息与通信技术的一个目标是简化工作。然而,关于不适当的工作量对员工健康和人员安全产生的负面影响,人们已逐渐达成共识。为了开发一种持续监测心理工作量的方法,我们实施了一组任务,其中包括具有不同复杂程度和难度的认知任务。我们进行了实验,并记录了54人的脑电图(EEG)、绩效数据以及NASA-TLX问卷。对EEG频谱的分析表明,随着任务难度水平的增加,额叶θ波段功率增加,顶叶α波段功率降低。基于这些发现,我们实施了一种监测心理工作量的新方法,即所谓的双频脑图(DFHM),它通过支持向量机(SVM)分为三种不同的工作量水平。结果与执行功能任务要求所产生的预期难度水平一致。此外,本文还对新方法在一个包含新受试者的二级子集中以及一个额外的新任务上进行了实证验证,且未对分类器进行任何调整。因此,与现有解决方案相比,该方法的主要优势在于它能自动、持续地对心理工作量状态进行分类,无需对分类器进行重新训练——无论是针对新受试者还是新任务。持续的工作量监测有助于确保良好的工作条件,保持良好的绩效水平,同时维持良好的健康状态。

相似文献

1
Dual Frequency Head Maps: A New Method for Indexing Mental Workload Continuously during Execution of Cognitive Tasks.
Front Physiol. 2017 Dec 8;8:1019. doi: 10.3389/fphys.2017.01019. eCollection 2017.
2
Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps.
Front Physiol. 2020 Apr 21;11:300. doi: 10.3389/fphys.2020.00300. eCollection 2020.
3
EEG-based discrimination of different cognitive workload levels from mental arithmetic.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1984-1987. doi: 10.1109/EMBC.2018.8512675.
5
Assessment of mental workload based on multi-physiological signals.
Technol Health Care. 2020;28(S1):67-80. doi: 10.3233/THC-209008.
6
Changes in Mental Workload and Motor Performance Throughout Multiple Practice Sessions Under Various Levels of Task Difficulty.
Neuroscience. 2018 Nov 21;393:305-318. doi: 10.1016/j.neuroscience.2018.09.019. Epub 2018 Sep 26.
7
Avionic technology testing by using a cognitive neurometric index: A study with professional helicopter pilots.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6182-5. doi: 10.1109/EMBC.2015.7319804.
8
An attempt to evaluate mental workload using wavelet transform of EEG.
Hum Factors. 2005 Fall;47(3):498-508. doi: 10.1518/001872005774860096.
9
Mental workload of young and older adults gauged with ERPs and spectral power during N-Back task performance.
Biol Psychol. 2019 Sep;146:107726. doi: 10.1016/j.biopsycho.2019.107726. Epub 2019 Jul 2.
10
Effects of mental workload on involuntary attention: A somatosensory ERP study.
Neuropsychologia. 2017 Nov;106:7-20. doi: 10.1016/j.neuropsychologia.2017.08.021. Epub 2017 Aug 18.

引用本文的文献

2
Cognitive tasks and combined statistical methods to evaluate, model, and predict mental workload.
Front Psychol. 2023 May 12;14:1122793. doi: 10.3389/fpsyg.2023.1122793. eCollection 2023.
3
Driving drowsiness detection using spectral signatures of EEG-based neurophysiology.
Front Physiol. 2023 Mar 30;14:1153268. doi: 10.3389/fphys.2023.1153268. eCollection 2023.
4
Mental workload level assessment based on compounded hysteresis effect.
Cogn Neurodyn. 2023 Apr;17(2):357-372. doi: 10.1007/s11571-022-09830-1. Epub 2022 Jun 26.
5
Cardiovascular Biomarkers' Inherent Timescales in Mental Workload Assessment During Simulated Air Traffic Control Tasks.
Appl Psychophysiol Biofeedback. 2021 Mar;46(1):43-59. doi: 10.1007/s10484-020-09490-z. Epub 2020 Oct 4.
6
Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps.
Front Physiol. 2020 Apr 21;11:300. doi: 10.3389/fphys.2020.00300. eCollection 2020.
7
The Effect of Planning, Strategy Learning, and Working Memory Capacity on Mental Workload.
Sci Rep. 2020 Apr 27;10(1):7096. doi: 10.1038/s41598-020-63897-6.
8
Single-Trial Cognitive Stress Classification Using Portable Wireless Electroencephalography.
Sensors (Basel). 2019 Jan 25;19(3):499. doi: 10.3390/s19030499.

本文引用的文献

1
Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.
J Neural Eng. 2017 Aug;14(4):046004. doi: 10.1088/1741-2552/aa69d1.
2
Efficient mental workload estimation using task-independent EEG features.
J Neural Eng. 2016 Apr;13(2):026019. doi: 10.1088/1741-2560/13/2/026019. Epub 2016 Feb 15.
3
Editorial: Using neurophysiological signals that reflect cognitive or affective state.
Front Neurosci. 2015 May 29;9:193. doi: 10.3389/fnins.2015.00193. eCollection 2015.
4
EEG artifact elimination by extraction of ICA-component features using image processing algorithms.
J Neurosci Methods. 2015 Mar 30;243:84-93. doi: 10.1016/j.jneumeth.2015.01.030. Epub 2015 Feb 7.
5
Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns.
Front Neurosci. 2013 Aug 21;7:149. doi: 10.3389/fnins.2013.00149. eCollection 2013.
6
The Met-genotype of the BDNF Val66Met polymorphism is associated with reduced Stroop interference in elderly.
Neuropsychologia. 2012 Dec;50(14):3554-63. doi: 10.1016/j.neuropsychologia.2012.09.042. Epub 2012 Oct 3.
7
Estimating workload using EEG spectral power and ERPs in the n-back task.
J Neural Eng. 2012 Aug;9(4):045008. doi: 10.1088/1741-2560/9/4/045008. Epub 2012 Jul 25.
8
Working memory: theories, models, and controversies.
Annu Rev Psychol. 2012;63:1-29. doi: 10.1146/annurev-psych-120710-100422. Epub 2011 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验