Samima Shabnam, Sarma Monalisa
Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal India.
Cogn Neurodyn. 2023 Apr;17(2):357-372. doi: 10.1007/s11571-022-09830-1. Epub 2022 Jun 26.
In the domain of neuroergonomics, cognitive workload estimation has taken a significant concern among the researchers. This is because the knowledge gathered from its estimation is useful for distributing tasks among the operators, understanding human capability and intervening operators at times of havoc. Brain signals give a promising prospective for understanding cognitive workload. For this, electroencephalography (EEG) is by far the most efficient modality in interpreting the covert information arising in the brain. The present work explores the feasibility of EEG rhythms for monitoring continuous change occurring in a person's cognitive workload. This continuous monitoring is achieved by graphicallyinterpreting the cumulative effect of changes in EEG rhythms observed in the current instance and the former instance based on the hysteresis effect. In this work, classification is done to predict the data class label using an artificial neural network (ANN) architecture. The proposed model gives a classification accuracy of 98.66%.
在神经工效学领域,认知工作量估计已成为研究人员高度关注的问题。这是因为从其估计中收集到的知识对于在操作员之间分配任务、了解人类能力以及在混乱时刻对操作员进行干预很有用。脑信号为理解认知工作量提供了一个有前景的方向。为此,脑电图(EEG)是迄今为止解释大脑中产生的隐蔽信息最有效的方式。目前的工作探索了脑电节律用于监测一个人认知工作量中持续变化的可行性。这种持续监测是通过基于滞后效应以图形方式解释当前实例和前一实例中观察到的脑电节律变化的累积效应来实现的。在这项工作中,使用人工神经网络(ANN)架构进行分类以预测数据类标签。所提出的模型给出了98.66%的分类准确率。