Suppr超能文献

基于复合滞后效应的心理负荷水平评估

Mental workload level assessment based on compounded hysteresis effect.

作者信息

Samima Shabnam, Sarma Monalisa

机构信息

Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal India.

出版信息

Cogn Neurodyn. 2023 Apr;17(2):357-372. doi: 10.1007/s11571-022-09830-1. Epub 2022 Jun 26.

Abstract

In the domain of neuroergonomics, cognitive workload estimation has taken a significant concern among the researchers. This is because the knowledge gathered from its estimation is useful for distributing tasks among the operators, understanding human capability and intervening operators at times of havoc. Brain signals give a promising prospective for understanding cognitive workload. For this, electroencephalography (EEG) is by far the most efficient modality in interpreting the covert information arising in the brain. The present work explores the feasibility of EEG rhythms for monitoring continuous change occurring in a person's cognitive workload. This continuous monitoring is achieved by graphicallyinterpreting the cumulative effect of changes in EEG rhythms observed in the current instance and the former instance based on the hysteresis effect. In this work, classification is done to predict the data class label using an artificial neural network (ANN) architecture. The proposed model gives a classification accuracy of 98.66%.

摘要

在神经工效学领域,认知工作量估计已成为研究人员高度关注的问题。这是因为从其估计中收集到的知识对于在操作员之间分配任务、了解人类能力以及在混乱时刻对操作员进行干预很有用。脑信号为理解认知工作量提供了一个有前景的方向。为此,脑电图(EEG)是迄今为止解释大脑中产生的隐蔽信息最有效的方式。目前的工作探索了脑电节律用于监测一个人认知工作量中持续变化的可行性。这种持续监测是通过基于滞后效应以图形方式解释当前实例和前一实例中观察到的脑电节律变化的累积效应来实现的。在这项工作中,使用人工神经网络(ANN)架构进行分类以预测数据类标签。所提出的模型给出了98.66%的分类准确率。

相似文献

1
Mental workload level assessment based on compounded hysteresis effect.基于复合滞后效应的心理负荷水平评估
Cogn Neurodyn. 2023 Apr;17(2):357-372. doi: 10.1007/s11571-022-09830-1. Epub 2022 Jun 26.
2
EEG-Based Mental Workload Estimation.基于脑电图的心理负荷评估
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5605-5608. doi: 10.1109/EMBC.2019.8857164.
5
EEG Fingerprints of Task-Independent Mental Workload Discrimination.基于脑电图的任务无关脑力负荷识别特征。
IEEE J Biomed Health Inform. 2021 Oct;25(10):3824-3833. doi: 10.1109/JBHI.2021.3085131. Epub 2021 Oct 5.

本文引用的文献

5
EEG-Based Mental Workload Estimation.基于脑电图的心理负荷评估
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5605-5608. doi: 10.1109/EMBC.2019.8857164.
8
Atomic Head Movement Analysis for Wearable Four-Dimensional Task Load Recognition.用于可穿戴式四维任务负荷识别的原子头动分析。
IEEE J Biomed Health Inform. 2019 Nov;23(6):2464-2474. doi: 10.1109/JBHI.2019.2893945. Epub 2019 Jan 18.
9
EEG classification of driver mental states by deep learning.基于深度学习的驾驶员心理状态脑电图分类
Cogn Neurodyn. 2018 Dec;12(6):597-606. doi: 10.1007/s11571-018-9496-y. Epub 2018 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验