Suppr超能文献

通过双频脑图谱对模拟空中交通管制任务中的心理负荷进行索引

Indexing Mental Workload During Simulated Air Traffic Control Tasks by Means of Dual Frequency Head Maps.

作者信息

Radüntz Thea, Fürstenau Norbert, Mühlhausen Thorsten, Meffert Beate

机构信息

Mental Health and Cognitive Capacity, Work and Health, Federal Institute for Occupational Safety and Health, Berlin, Germany.

Institute of Flight Guidance, German Aerospace Center, Braunschweig, Germany.

出版信息

Front Physiol. 2020 Apr 21;11:300. doi: 10.3389/fphys.2020.00300. eCollection 2020.

Abstract

In our digitized society, advanced information and communication technology and highly interactive work environments impose high demands on cognitive capacity. Optimal workload conditions are important for assuring employee's health and safety of other persons. This is particularly relevant in safety-critical occupations, such as air traffic control. For measuring mental workload using the EEG, we have developed the method of Dual Frequency Head Maps (DFHM). The method was tested and validated already under laboratory conditions. However, validation of the method regarding reliability and reproducibility of results under realistic settings and real world scenarios was still required. In our study, we examined 21 air traffic controllers during arrival management tasks. Mental workload variations were achieved by simulation scenarios with different number of aircraft and the occurrence of a priority-flight request as an exceptional event. The workload was assessed using the EEG-based DFHM-workload index and instantaneous self-assessment questionnaire. The DFHM-workload index gave stable results with highly significant correlations between scenarios with similar traffic-load conditions ( between 0.671 and 0.809, ≤ 0.001). For subjects reporting that they experienced workload variation between the different scenarios, the DFHM-workload index yielded significant differences between traffic-load levels and priority-flight request conditions. For subjects who did not report to experience workload variations between the scenarios, the DFHM-workload index did not yield any significant differences for any of the factors. We currently conclude that the DFHM-workload index reveals potential for applications outside the laboratory and yields stable results without retraining of the classifiers neither regarding new subjects nor new tasks.

摘要

在我们的数字化社会中,先进的信息通信技术和高度互动的工作环境对认知能力提出了很高的要求。最佳的工作量条件对于确保员工的健康和他人的安全至关重要。这在安全关键型职业中尤为重要,例如空中交通管制。为了使用脑电图测量心理工作量,我们开发了双频脑图谱(DFHM)方法。该方法已经在实验室条件下进行了测试和验证。然而,仍需要在实际环境和现实场景中对该方法的结果可靠性和可重复性进行验证。在我们的研究中,我们在到达管理任务期间对21名空中交通管制员进行了检查。通过模拟不同数量飞机的场景以及作为特殊事件的优先飞行请求的出现来实现心理工作量的变化。使用基于脑电图的DFHM工作量指数和即时自我评估问卷来评估工作量。DFHM工作量指数给出了稳定的结果,在交通负荷条件相似的场景之间具有高度显著的相关性(在0.671和0.809之间,≤0.001)。对于报告在不同场景之间经历了工作量变化的受试者,DFHM工作量指数在交通负荷水平和优先飞行请求条件之间产生了显著差异。对于未报告在场景之间经历工作量变化的受试者,DFHM工作量指数在任何因素上均未产生任何显著差异。我们目前得出结论,DFHM工作量指数显示出在实验室之外的应用潜力,并且在不针对新受试者或新任务重新训练分类器的情况下产生稳定的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5003/7186426/454b484040b3/fphys-11-00300-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验