Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Université Lille 1 SMMiL-E project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France.
Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
EBioMedicine. 2018 Jan;27:225-236. doi: 10.1016/j.ebiom.2017.12.014. Epub 2017 Dec 20.
Angiogenesis is the formation of new capillaries from pre-existing blood vessels and participates in proper vasculature development. In pathological conditions such as cancer, abnormal angiogenesis takes place. Angiogenesis is primarily carried out by endothelial cells, the innermost layer of blood vessels. The vascular endothelial growth factor-A (VEGF-A) and its receptor-2 (VEGFR-2) trigger most of the mechanisms activating and regulating angiogenesis, and have been the targets for the development of drugs. However, most experimental assays assessing angiogenesis rely on animal models. We report an in vitro model using a microvessel-on-a-chip. It mimics an effective endothelial sprouting angiogenesis event triggered from an initial microvessel using a single angiogenic factor, VEGF-A. The angiogenic sprouting in this model is depends on the Notch signaling, as observed in vivo. This model enables the study of anti-angiogenic drugs which target a specific factor/receptor pathway, as demonstrated by the use of the clinically approved sorafenib and sunitinib for targeting the VEGF-A/VEGFR-2 pathway. Furthermore, this model allows testing simultaneously angiogenesis and permeability. It demonstrates that sorafenib impairs the endothelial barrier function, while sunitinib does not. Such in vitro human model provides a significant complimentary approach to animal models for the development of effective therapies.
血管生成是指从预先存在的血管中形成新的毛细血管,并参与适当的血管发育。在癌症等病理条件下,会发生异常的血管生成。血管生成主要由血管内皮细胞(血管的最内层细胞)完成。血管内皮生长因子-A(VEGF-A)及其受体-2(VEGFR-2)触发并调节大多数激活血管生成的机制,已成为药物开发的靶点。然而,大多数评估血管生成的实验检测都依赖于动物模型。我们报告了一种使用微脉管芯片的体外模型。它模拟了从单个血管生成因子 VEGF-A 触发初始微脉管的有效内皮发芽血管生成事件。在这个模型中,血管生成的发芽依赖于 Notch 信号通路,这与体内观察到的情况一致。该模型能够研究针对特定因子/受体途径的抗血管生成药物,如使用临床上批准的索拉非尼和舒尼替尼靶向 VEGF-A/VEGFR-2 途径所证明的那样。此外,该模型允许同时测试血管生成和通透性。它表明索拉非尼会损害内皮屏障功能,而舒尼替尼则不会。这种体外的人类模型为开发有效的治疗方法提供了一种与动物模型显著互补的方法。