Suppr超能文献

脑电图和面部肌电图中情绪先行评估检查的证据。

Evidence of emotion-antecedent appraisal checks in electroencephalography and facial electromyography.

作者信息

Coutinho Eduardo, Gentsch Kornelia, van Peer Jacobien, Scherer Klaus R, Schuller Björn W

机构信息

Department of Music, University of Liverpool, Liverpool, United Kingdom.

Department of Computing, Imperial College London, London, United Kingdom.

出版信息

PLoS One. 2018 Jan 2;13(1):e0189367. doi: 10.1371/journal.pone.0189367. eCollection 2018.

Abstract

In the present study, we applied Machine Learning (ML) methods to identify psychobiological markers of cognitive processes involved in the process of emotion elicitation as postulated by the Component Process Model (CPM). In particular, we focused on the automatic detection of five appraisal checks-novelty, intrinsic pleasantness, goal conduciveness, control, and power-in electroencephalography (EEG) and facial electromyography (EMG) signals. We also evaluated the effects on classification accuracy of averaging the raw physiological signals over different numbers of trials, and whether the use of minimal sets of EEG channels localized over specific scalp regions of interest are sufficient to discriminate between appraisal checks. We demonstrated the effectiveness of our approach on two data sets obtained from previous studies. Our results show that novelty and power appraisal checks can be consistently detected in EEG signals above chance level (binary tasks). For novelty, the best classification performance in terms of accuracy was achieved using features extracted from the whole scalp, and by averaging across 20 individual trials in the same experimental condition (UAR = 83.5 ± 4.2; N = 25). For power, the best performance was obtained by using the signals from four pre-selected EEG channels averaged across all trials available for each participant (UAR = 70.6 ± 5.3; N = 24). Together, our results indicate that accurate classification can be achieved with a relatively small number of trials and channels, but that averaging across a larger number of individual trials is beneficial for the classification for both appraisal checks. We were not able to detect any evidence of the appraisal checks under study in the EMG data. The proposed methodology is a promising tool for the study of the psychophysiological mechanisms underlying emotional episodes, and their application to the development of computerized tools (e.g., Brain-Computer Interface) for the study of cognitive processes involved in emotions.

摘要

在本研究中,我们应用机器学习(ML)方法来识别成分过程模型(CPM)所假定的情绪诱发过程中涉及的认知过程的心理生物学标记。具体而言,我们专注于通过脑电图(EEG)和面部肌电图(EMG)信号自动检测五种评估检查——新颖性、内在愉悦性、目标适宜性、可控性和力量感。我们还评估了在不同试验次数上对原始生理信号进行平均处理对分类准确率的影响,以及使用位于特定感兴趣头皮区域的最少数量的EEG通道是否足以区分评估检查。我们在从先前研究中获得的两个数据集上证明了我们方法的有效性。我们的结果表明,在EEG信号中可以始终如一地检测到高于机遇水平的新颖性和力量感评估检查(二元任务)。对于新颖性,使用从整个头皮提取的特征,并在相同实验条件下对20次个体试验进行平均,在准确率方面实现了最佳分类性能(UAR = 83.5 ± 4.2;N = 25)。对于力量感,通过使用来自四个预先选择的EEG通道的信号,对每个参与者可用的所有试验进行平均,获得了最佳性能(UAR = 70.6 ± 5.3;N = 24)。总之,我们的结果表明,使用相对较少的试验次数和通道即可实现准确分类,但对更多个体试验进行平均处理对两种评估检查的分类都有益。我们未能在EMG数据中检测到所研究的评估检查的任何证据。所提出的方法是研究情绪发作背后的心理生理机制以及将其应用于开发用于研究情绪中涉及的认知过程的计算机化工具(例如,脑机接口)的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6b/5749688/ae8a9bbf1de5/pone.0189367.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验