Suppr超能文献

从单细胞测量结果中对调控早期血液发育的基因网络进行反向工程改造。

Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

机构信息

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, 430073, China.

School of Computer, Central China Normal University, Wuhan, 430079, China.

出版信息

BMC Med Genomics. 2017 Dec 28;10(Suppl 5):72. doi: 10.1186/s12920-017-0312-z.

Abstract

BACKGROUND

Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information.

METHODS

This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression.

RESULTS

The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks.

CONCLUSION

The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.

摘要

背景

组学技术的最新进展为研究细胞内大规模调控网络提供了巨大的机会。此外,单细胞实验已经在相同的实验条件下测量了大量细胞中的基因和蛋白质活性。然而,计算生物学和生物信息学的一个重大挑战是如何从单细胞观测中得出定量信息,以及如何开发复杂的数学模型来使用得出的定量信息描述调控网络的动态特性。

方法

本研究基于单细胞实验观测,设计了一种综合方法来反向工程调控早期血液发育的基因网络。最初使用 wanderlust 算法来开发许多基因活性的伪轨迹。由于开发的伪轨迹中的基因表达数据波动较大,因此我们使用高斯过程回归方法对基因表达数据进行平滑处理,以获得波动较小的伪轨迹。所提出的集成框架包括用于重建调控网络的生物信息学算法和使用微分方程描述基因表达动力学的数学模型。

结果

该方法应用于研究调控早期血细胞发育的网络。构建了一个具有四十个基因的调控网络的图形模型,并为一个具有九个基因的网络开发了一个使用微分方程的动态模型。数值结果表明,所提出的模型能够很好地匹配实验数据。我们还检查了具有更多调控关系的网络,数值结果表明可能存在更多的调控关系。我们测试了自动调控的可能性,但数值模拟不支持正的自动调控。此外,稳健性被用作选择候选网络的重要附加标准。

结论

本工作的研究结果表明,该方法是一种使用单细胞实验观测来反向工程基因网络的有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验