Suppr超能文献

SIGNET:基于单细胞 RNA-seq 的基因调控网络预测,使用多层感知机装袋。

SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging.

机构信息

School of Medicine, Tsinghua University, Beijing, China.

School of Medicine,and the Tsinghua-Peking Center for Life science, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab547.

Abstract

High-throughput single-cell RNA-seq data have provided unprecedented opportunities for deciphering the regulatory interactions among genes. However, such interactions are complex and often nonlinear or nonmonotonic, which makes their inference using linear models challenging. We present SIGNET, a deep learning-based framework for capturing complex regulatory relationships between genes under the assumption that the expression levels of transcription factors participating in gene regulation are strong predictors of the expression of their target genes. Evaluations based on a variety of real and simulated scRNA-seq datasets showed that SIGNET is more sensitive to ChIP-seq validated regulatory interactions in different types of cells, particularly rare cells. Therefore, this process is more effective for various downstream analyses, such as cell clustering and gene regulatory network inference. We demonstrated that SIGNET is a useful tool for identifying important regulatory modules driving various biological processes.

摘要

高通量单细胞 RNA-seq 数据为破译基因间的调控相互作用提供了前所未有的机会。然而,这些相互作用是复杂的,通常是非线性或非单调的,这使得使用线性模型推断它们具有挑战性。我们提出了 SIGNET,这是一个基于深度学习的框架,用于在假设参与基因调控的转录因子的表达水平是其靶基因表达的强预测因子的情况下,捕捉基因之间复杂的调控关系。基于各种真实和模拟的 scRNA-seq 数据集的评估表明,SIGNET 在不同类型的细胞,特别是稀有细胞中,对 ChIP-seq 验证的调控相互作用更敏感。因此,该方法对于各种下游分析(如细胞聚类和基因调控网络推断)更有效。我们证明 SIGNET 是识别驱动各种生物过程的重要调控模块的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b3/8769917/a8f218a3db08/bbab547f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验