Suppr超能文献

道路交通事故预测模型:尼日利亚阿南布拉州分析。

Road traffic accidents prediction modelling: An analysis of Anambra State, Nigeria.

机构信息

Department of Industrial and Production Engineering, Nnamdi Azikiwe University, Awka, Nigeria.

出版信息

Accid Anal Prev. 2018 Mar;112:21-29. doi: 10.1016/j.aap.2017.12.016.

Abstract

One of the major problems in the world today is the rate of road traffic crashes and deaths on our roads. Majority of these deaths occur in low-and-middle income countries including Nigeria. This study analyzed road traffic crashes in Anambra State, Nigeria with the intention of developing accurate predictive models for forecasting crash frequency in the State using autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average with explanatory variables (ARIMAX) modelling techniques. The result showed that ARIMAX model outperformed the ARIMA (1,1,1) model generated when their performances were compared using the lower Bayesian information criterion, mean absolute percentage error, root mean square error; and higher coefficient of determination (R-Squared) as accuracy measures. The findings of this study reveal that incorporating human, vehicle and environmental related factors in time series analysis of crash dataset produces a more robust predictive model than solely using aggregated crash count. This study contributes to the body of knowledge on road traffic safety and provides an approach to forecasting using many human, vehicle and environmental factors. The recommendations made in this study if applied will help in reducing the number of road traffic crashes in Nigeria.

摘要

当今世界的主要问题之一是道路交通事故率和死亡率。这些死亡大多发生在包括尼日利亚在内的中低收入国家。本研究分析了尼日利亚阿南布拉州的道路交通事故,旨在使用自回归综合移动平均(ARIMA)和带解释变量的自回归综合移动平均(ARIMAX)建模技术,为该州的事故频率预测开发准确的预测模型。结果表明,在使用较低的贝叶斯信息准则、平均绝对百分比误差、均方根误差和较高的确定系数(R-平方)作为准确性度量来比较其性能时,ARIMAX 模型优于生成的 ARIMA(1,1,1)模型。这项研究的结果表明,将人为、车辆和环境相关因素纳入事故数据集的时间序列分析中,可以生成比仅使用聚合事故计数更强大的预测模型。本研究为道路交通安全知识体系做出了贡献,并提供了一种使用多种人为、车辆和环境因素进行预测的方法。如果应用本研究中的建议,将有助于减少尼日利亚的道路交通事故数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验