Suppr超能文献

预测 2030 年伊朗道路交通伤害负担:流行率、死亡和伤残调整生命年。

Prediction of the burden of road traffic injuries in Iran by 2030: Prevalence, death, and disability-adjusted life years.

机构信息

Non-communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.

Health Human Resources Research Center, School of Health Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Chin J Traumatol. 2024 Jul;27(4):242-248. doi: 10.1016/j.cjtee.2024.02.004. Epub 2024 Feb 24.

Abstract

PURPOSE

Road traffic accidents pose a global challenge with substantial human and economic costs. Iran experiences a high incidence of road traffic injuries, leading to a significant burden on society. This study aims to predict the future burden of road traffic injuries in Iran until 2030, providing valuable insights for policy-making and interventions to improve road safety and reduce the associated human and economic costs.

METHODS

This analytical study utilized time series models, specifically autoregressive integrated moving average (ARIMA) and artificial neural networks (ANNs), to predict the burden of road traffic accidents by analyzing past data to identify patterns and trends in Iran until 2030. The required data related to prevalence, death, and disability-adjusted life years (DALYs) rates were collected from the Institute for Health Metrics and Evaluation database and analyzed using R software and relevant modeling and statistical analysis packages.

RESULTS

Both prediction models, ARIMA and ANNs indicate that the prevalence rates (per 100,000) of all road traffic injuries, except for motorcyclist road injuries which have an almost flat trend, remaining at around 430, increase by 2030. Based on estimations of both models, the rates of death and DALYs due to motor vehicle and pedestrian road traffic injuries decrease. For motor vehicle road injuries, estimated trends decrease to approximately 520 DALYs and 10 deaths. Also, for pedestrian road injuries these rates reached approximately 300 DALYs and 6 deaths, according to the models. For cyclists and other road traffic injuries, the predicted DALY rates by the ANN model increase to almost 50 and 8, while predictions conducted by the ARIMA model show a static trend, remaining at 40 and approximately 6.5. Moreover, these rates for the prediction of death rate by the ANN model increased to 0.6 and 0.1, while predictions conducted by the ARIMA model show a static trend, remaining at 0.43 and 0.07. According to the ANN model, the predicted rates of DALY and death for motorcyclists decrease to 100 and approximately 2.7, respectively. On the other hand, predictions made by the ARIMA model show a static trend, with rates remaining at 200 and approximately 3.2, respectively.

CONCLUSION

The prevalence of road traffic injuries is predicted to increase, while the death and DALY rates of road traffic injuries show different patterns. Effective intervention programs and safety measures are necessary to prevent and reduce road traffic accidents. Different interventions should be designed and implemented specifically for different groups of pedestrians, cyclists, motorcyclists, and motor vehicle drivers.

摘要

目的

道路交通事故事关重大,不仅耗费大量人力和财力,还会造成人员伤亡。伊朗是世界上发生道路交通伤害事故频率较高的国家之一,这给社会带来了沉重的负担。本研究旨在预测伊朗未来至 2030 年道路交通伤害负担,为改善道路安全和降低相关人力及经济成本提供政策制定和干预的参考依据。

方法

本分析性研究采用时间序列模型,即自回归综合移动平均模型(ARIMA)和人工神经网络(ANNs),通过分析伊朗过去的数据,识别出模式和趋势,对道路交通伤害负担进行预测。研究所需的患病率、死亡率和伤残调整生命年(DALY)率数据均来自健康指标与评估研究所数据库,使用 R 软件和相关建模与统计分析包进行分析。

结果

ARIMA 和 ANN 两种预测模型均显示,除摩托车道路伤害外,所有道路交通伤害的患病率(每 10 万人)预计都会增加,直至 2030 年。摩托车道路伤害的患病率基本保持在 430 左右,呈近乎平稳的趋势。根据两种模型的预测,机动车和行人道路伤害导致的死亡率和 DALY 均呈下降趋势。机动车道路伤害的死亡率和 DALY 预计将分别下降至 520 和 10 人。行人道路伤害的死亡率和 DALY 预计将分别下降至 300 和 6 人。根据 ANN 模型预测,自行车和其他道路交通伤害的 DALY 率将增加至近 50 和 8,而 ARIMA 模型的预测则呈静态趋势,维持在 40 和 6.5 左右。此外,ANN 模型预测的死亡率增加至 0.6 和 0.1,而 ARIMA 模型的预测则呈静态趋势,维持在 0.43 和 0.07。根据 ANN 模型预测,摩托车驾驶员的 DALY 和死亡率预计将分别下降至 100 和 2.7 左右。而 ARIMA 模型的预测则呈静态趋势,分别维持在 200 和 3.2 左右。

结论

预计道路交通伤害的患病率将上升,而道路交通伤害的死亡率和 DALY 率则呈现不同的趋势。为预防和减少道路交通伤害事故,需要采取有效的干预措施。应根据不同人群(行人、自行车手、摩托车手和机动车驾驶员)的特点,设计和实施有针对性的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05ec/11357753/6db46ba68073/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验