Suppr超能文献

利用简化氨基酸字母表和随机森林模型从氨基酸序列预测蛋白质中的金属离子结合位点

Prediction of Metal Ion Binding Sites in Proteins from Amino Acid Sequences by Using Simplified Amino Acid Alphabets and Random Forest Model.

作者信息

Kumar Suresh

机构信息

Department of Diagnostic and Allied Health Sciences, Faculty of Health and Life Sciences, Management and Science University, 40100 Shah Alam, Malaysia.

出版信息

Genomics Inform. 2017 Dec;15(4):162-169. doi: 10.5808/GI.2017.15.4.162. Epub 2017 Dec 29.

Abstract

Metal binding proteins or metallo-proteins are important for the stability of the protein and also serve as co-factors in various functions like controlling metabolism, regulating signal transport, and metal homeostasis. In structural genomics, prediction of metal binding proteins help in the selection of suitable growth medium for overexpression's studies and also help in obtaining the functional protein. Computational prediction using machine learning approach has been widely used in various fields of bioinformatics based on the fact all the information contains in amino acid sequence. In this study, random forest machine learning prediction systems were deployed with simplified amino acid for prediction of individual major metal ion binding sites like copper, calcium, cobalt, iron, magnesium, manganese, nickel, and zinc.

摘要

金属结合蛋白或金属蛋白对于蛋白质的稳定性很重要,并且在各种功能中作为辅助因子发挥作用,如控制新陈代谢、调节信号传输和维持金属稳态。在结构基因组学中,预测金属结合蛋白有助于为过表达研究选择合适的生长培养基,也有助于获得功能性蛋白质。基于氨基酸序列中包含的所有信息,使用机器学习方法的计算预测已在生物信息学的各个领域中广泛应用。在本研究中,随机森林机器学习预测系统采用简化氨基酸来预测单个主要金属离子结合位点,如铜、钙、钴、铁、镁、锰、镍和锌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38a0/5769865/9d5cbaa2dff1/gi-15-4-162f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验