Suppr超能文献

未实现的潜力:队列效应与年龄-时期-队列分析

The unrealized potential: cohort effects and age-period-cohort analysis.

作者信息

Heo Jongho, Jeon Sun-Young, Oh Chang-Mo, Hwang Jongnam, Oh Juhwan, Cho Youngtae

机构信息

JW LEE Center for Global Medicine, Seoul National University College of Medicine, Seoul, Korea.

Center for Healthcare Policy and Research, University of California Davis, Davis, CA, USA.

出版信息

Epidemiol Health. 2017 Dec 5;39:e2017056. doi: 10.4178/epih.e2017056. eCollection 2017.

Abstract

This study aims to provide a systematical introduction of age-period-cohort (APC) analysis to South Korean readers who are unfamiliar with this method (we provide an extended version of this study in Korean). As health data in South Korea has substantially accumulated, population-level studies that explore long-term trends of health status and health inequalities and identify macrosocial determinants of the trends are needed. Analyzing long-term trends requires to discern independent effects of age, period, and cohort using APC analysis. Most existing health and aging literature have used cross-sectional or short-term available panel data to identify age or period effects ignoring cohort effects. This under-use of APC analysis may be attributed to the identification (ID) problem caused by the perfect linear dependency across age, period, and cohort. This study explores recently developed three APC models to address the ID problem and adequately estimate the effects of A-P-C: intrinsic estimator-APC models for tabular age by period data; hierarchical cross-classified random effects models for repeated cross-sectional data; and hierarchical APC-growth curve models for accelerated longitudinal panel data. An analytic exemplar for each model was provided. APC analysis may contribute to identifying biological, historical, and socioeconomic determinants in long-term trends of health status and health inequalities as well as examining Korean's aging trajectories and temporal trends of period and cohort effects. For designing effective health policies that improve Korean population's health and reduce health inequalities, it is essential to understand independent effects of the three temporal factors by using the innovative APC models.

摘要

本研究旨在向不熟悉年龄-时期-队列(APC)分析方法的韩国读者系统介绍该方法(我们提供了该研究的韩文扩展版本)。由于韩国的健康数据已大量积累,因此需要开展人口层面的研究,以探索健康状况和健康不平等的长期趋势,并确定这些趋势的宏观社会决定因素。分析长期趋势需要使用APC分析来辨别年龄、时期和队列的独立影响。大多数现有的健康与老龄化文献使用横断面数据或短期可得的面板数据来识别年龄或时期效应,而忽略了队列效应。APC分析的这种使用不足可能归因于年龄、时期和队列之间完全线性相关所导致的识别(ID)问题。本研究探讨了最近开发的三种APC模型,以解决ID问题并充分估计年龄、时期和队列的影响:用于按时期划分表格年龄数据的内在估计器-APC模型;用于重复横断面数据的分层交叉分类随机效应模型;以及用于加速纵向面板数据的分层APC-增长曲线模型。并为每个模型提供了一个分析示例。APC分析可能有助于识别健康状况和健康不平等长期趋势中的生物学、历史和社会经济决定因素,以及审视韩国人的老龄化轨迹以及时期和队列效应的时间趋势。对于设计有效的健康政策以改善韩国人口的健康状况并减少健康不平等而言,使用创新的APC模型来理解这三个时间因素的独立影响至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aafa/5790985/a4cdc056335a/epih-39-e2017056f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验