Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China.
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an 710119, China.
Talanta. 2018 Mar 1;179:531-537. doi: 10.1016/j.talanta.2017.11.033. Epub 2017 Nov 21.
Highly selective and sensitive detection methods are very important for the early diagnosis of prostate-specific antigen (PSA). Here, we present a novel peptide/FeO@SiO-Au nanocomposite-based fluorescence biosensor for highly selective and sensitive detection of PSA. The biosensor was made by self-organizing 5-FAM labeled peptides onto the surface of magnetic FeO@SiO-Au nanocomposites (MNCPs), resulting in efficient quenching of the FAM fluorescence. The PSA specifically recognized and cleaved the 5-FAM-labeled peptides, leading to the fluorescence recovery. This is the first report of the MNCPs by in situ growth of Au nanoparticles (AuNPs) on the SiO encapsulated single FeO nanocubes. The MNCPs feature robust salt stability, and allow for effective fluorescence quenching and easy magnetic separation, which greatly decrease the background fluorescence. The peptide/MNCPs-based fluorescence biosensor measure a wide range of concentrations of PSA, from 1.0 × 10 to 1.0 × 10g/mL, with a limit of detection (LOD) of 3.0 × 10g/mL in both standard solutions and serum samples, demonstrating the great potential of this biosensor platform for use in clinical and biological assays.
高度选择性和敏感性的检测方法对于前列腺特异性抗原(PSA)的早期诊断非常重要。在这里,我们提出了一种基于新型肽/FeO@SiO-Au 纳米复合材料的荧光生物传感器,用于 PSA 的高选择性和灵敏检测。该生物传感器是通过将 5-FAM 标记的肽自组织到磁性 FeO@SiO-Au 纳米复合材料(MNCPs)的表面上制成的,导致 FAM 荧光的有效猝灭。PSA 特异性识别和切割 5-FAM 标记的肽,导致荧光恢复。这是首次报道在 SiO 封装的单 FeO 纳米立方体上原位生长 Au 纳米粒子(AuNPs)的 MNCPs。MNCPs 具有强大的耐盐稳定性,并允许有效荧光猝灭和易于磁性分离,从而大大降低了背景荧光。基于肽/MNCPs 的荧光生物传感器可以测量从 1.0×10 到 1.0×10g/mL 的 PSA 的宽浓度范围,在标准溶液和血清样品中的检测限(LOD)分别为 3.0×10g/mL,证明了该生物传感器平台在临床和生物分析中的巨大应用潜力。