Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands.
Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E610-E619. doi: 10.1073/pnas.1715911114. Epub 2018 Jan 8.
The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Ki67 allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.
成年小鼠室管膜下区为哺乳动物神经干细胞 (NSCs) 提供了一个龛位。然而,NSCs 的分子特征、自我更新潜力和命运行为仍未得到很好的定义。在这里,我们提出了一个模型,其中活跃的 NSCs 的命运与共享龛位中相邻 NSCs 的总数相关联。使用基因敲入报告基因等位基因和单细胞 RNA 测序,我们表明 Wnt 靶基因 Troy 可以识别活跃和静止的 NSCs。在稳态或响应损伤的情况下对单个 NSCs 的遗传谱系追踪的定量分析显示,在一些 NSCs 回到静止状态之前,干细胞数量会迅速增加。这种行为最好通过随机命运决定来解释,其中共享龛位内的干细胞数量随时间波动。使用 Ki67 等位基因对增殖细胞进行命运映射证实,活跃的 NSCs 可以可逆地回到静止状态,从而实现长期自我更新。我们的发现表明,NSC 命运和数量的调节存在基于龛位的机制。