Suppr超能文献

实验性噪声截止提升了大规模基因敲除研究中转录网络的可推断性。

Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies.

作者信息

Blum C F, Heramvand N, Khonsari A S, Kollmann M

机构信息

Institute for Mathematical Modeling of Biological Systems, Heinrich-Heine University of Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.

Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.

出版信息

Nat Commun. 2018 Jan 9;9(1):133. doi: 10.1038/s41467-017-02489-x.

Abstract

Generating a comprehensive map of molecular interactions in living cells is difficult and great efforts are undertaken to infer molecular interactions from large-scale perturbation experiments. Here, we develop the analytical and numerical tools to quantify the fundamental limits for inferring transcriptional networks from gene knockout screens and introduce a network inference method that is unbiased with respect to measurement noise and scalable to large network sizes. We show that network asymmetry, knockout coverage and measurement noise are central determinants that limit prediction accuracy, whereas the knowledge about gene-specific variability among biological replicates can be used to eliminate noise-sensitive nodes and thereby boost the performance of network inference algorithms.

摘要

生成活细胞中分子相互作用的全面图谱是困难的,因此人们付出了巨大努力从大规模扰动实验中推断分子相互作用。在这里,我们开发了分析和数值工具来量化从基因敲除筛选中推断转录网络的基本限制,并引入了一种对测量噪声无偏且可扩展到大型网络规模的网络推断方法。我们表明,网络不对称性、敲除覆盖率和测量噪声是限制预测准确性的核心决定因素,而关于生物重复样本中基因特异性变异性的知识可用于消除对噪声敏感的节点,从而提高网络推断算法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3855/5760630/662d2de755c1/41467_2017_2489_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验