Suppr超能文献

基于扰动图和传递简约的大规模调控网络重建:改进方法及其评估

Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation.

作者信息

Pinna Andrea, Heise Sandra, Flassig Robert J, de la Fuente Alberto, Klamt Steffen

机构信息

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.

出版信息

BMC Syst Biol. 2013 Aug 8;7:73. doi: 10.1186/1752-0509-7-73.

Abstract

BACKGROUND

The data-driven inference of intracellular networks is one of the key challenges of computational and systems biology. As suggested by recent works, a simple yet effective approach for reconstructing regulatory networks comprises the following two steps. First, the observed effects induced by directed perturbations are collected in a signed and directed perturbation graph (PG). In a second step, Transitive Reduction (TR) is used to identify and eliminate those edges in the PG that can be explained by paths and are therefore likely to reflect indirect effects.

RESULTS

In this work we introduce novel variants for PG generation and TR, leading to significantly improved performances. The key modifications concern: (i) use of novel statistical criteria for deriving a high-quality PG from experimental data; (ii) the application of local TR which allows only short paths to explain (and remove) a given edge; and (iii) a novel strategy to rank the edges with respect to their confidence. To compare the new methods with existing ones we not only apply them to a recent DREAM network inference challenge but also to a novel and unprecedented synthetic compendium consisting of 30,5000-gene networks simulated with varying biological and measurement error variances resulting in a total of 270 datasets. The benchmarks clearly demonstrate the superior reconstruction performance of the novel PG and TR variants compared to existing approaches. Moreover, the benchmark enabled us to draw some general conclusions. For example, it turns out that local TR restricted to paths with a length of only two is often sufficient or even favorable. We also demonstrate that considering edge weights is highly beneficial for TR whereas consideration of edge signs is of minor importance. We explain these observations from a graph-theoretical perspective and discuss the consequences with respect to a greatly reduced computational demand to conduct TR. Finally, as a realistic application scenario, we use our framework for inferring gene interactions in yeast based on a library of gene expression data measured in mutants with single knockouts of transcription factors. The reconstructed network shows a significant enrichment of known interactions, especially within the 100 most confident (and for experimental validation most relevant) edges.

CONCLUSIONS

This paper presents several major achievements. The novel methods introduced herein can be seen as state of the art for inference techniques relying on perturbation graphs and transitive reduction. Another key result of the study is the generation of a new and unprecedented large-scale in silico benchmark dataset accounting for different noise levels and providing a solid basis for unbiased testing of network inference methodologies. Finally, applying our approach to Saccharomyces cerevisiae suggested several new gene interactions with high confidence awaiting experimental validation.

摘要

背景

细胞内网络的数据驱动推理是计算生物学和系统生物学的关键挑战之一。正如最近的研究所示,一种简单而有效的重建调控网络的方法包括以下两个步骤。首先,将定向扰动所诱导的观察到的效应收集到一个带符号和定向的扰动图(PG)中。第二步,使用传递约简(TR)来识别和消除PG中那些可以由路径解释的边,因此这些边可能反映间接效应。

结果

在这项工作中,我们引入了用于PG生成和TR的新变体,从而显著提高了性能。关键的修改包括:(i)使用新的统计标准从实验数据中导出高质量的PG;(ii)应用局部TR,它只允许短路径来解释(并消除)给定的边;(iii)一种根据边的置信度对边进行排序的新策略。为了将新方法与现有方法进行比较,我们不仅将它们应用于最近的DREAM网络推理挑战,还应用于一个新颖且前所未有的合成数据集,该数据集由305000个基因网络组成,这些网络在不同的生物学和测量误差方差下进行模拟,总共产生270个数据集。基准测试清楚地表明,与现有方法相比,新型PG和TR变体具有卓越的重建性能。此外,基准测试使我们能够得出一些一般性结论。例如,事实证明,仅限制在长度为2的路径上的局部TR通常就足够了,甚至是有利的。我们还证明,考虑边权重对TR非常有益,而考虑边的符号则不太重要。我们从图论的角度解释了这些观察结果,并讨论了对大大降低进行TR的计算需求的影响。最后,作为一个实际应用场景,我们使用我们的框架基于在转录因子单敲除突变体中测量的基因表达数据文库来推断酵母中的基因相互作用。重建的网络显示出已知相互作用的显著富集,特别是在100条最有信心(且对实验验证最相关)的边内。

结论

本文提出了几项主要成果。本文介绍的新方法可以被视为依赖扰动图和传递约简的推理技术的最新水平。该研究的另一个关键结果是生成了一个新的、前所未有的大规模计算机模拟基准数据集,该数据集考虑了不同的噪声水平,并为网络推理方法的无偏测试提供了坚实的基础。最后,将我们的方法应用于酿酒酵母,提出了几个高置信度的新基因相互作用,有待实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f70/4231426/64f6f48e9843/1752-0509-7-73-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验