Suppr超能文献

机器学习算法预测心脏再同步治疗结局:来自 COMPANION 试验的经验。

Machine Learning Algorithm Predicts Cardiac Resynchronization Therapy Outcomes: Lessons From the COMPANION Trial.

机构信息

From the Division of Cardiovascular Medicine, Department of Medicine, School of Medicine and Public Health (M.M.K., R.T.K., M.C.T., M.E.F., L.L.E.), Department of Biostatistics and Medical Informatics (C.M., K.A.B., D.L.D., C.D.P.), University of Wisconsin Institute for Clinical and Translational Research (C.M.), and Department of Computer Sciences (C.D.P.), University of Wisconsin-Madison.

出版信息

Circ Arrhythm Electrophysiol. 2018 Jan;11(1):e005499. doi: 10.1161/CIRCEP.117.005499.

Abstract

BACKGROUND

Cardiac resynchronization therapy (CRT) reduces morbidity and mortality in heart failure patients with reduced left ventricular function and intraventricular conduction delay. However, individual outcomes vary significantly. This study sought to use a machine learning algorithm to develop a model to predict outcomes after CRT.

METHODS AND RESULTS

Models were developed with machine learning algorithms to predict all-cause mortality or heart failure hospitalization at 12 months post-CRT in the COMPANION trial (Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure). The best performing model was developed with the random forest algorithm. The ability of this model to predict all-cause mortality or heart failure hospitalization and all-cause mortality alone was compared with discrimination obtained using a combination of bundle branch block morphology and QRS duration. In the 595 patients with CRT-defibrillator in the COMPANION trial, 105 deaths occurred (median follow-up, 15.7 months). The survival difference across subgroups differentiated by bundle branch block morphology and QRS duration did not reach significance (=0.08). The random forest model produced quartiles of patients with an 8-fold difference in survival between those with the highest and lowest predicted probability for events (hazard ratio, 7.96; <0.0001). The model also discriminated the risk of the composite end point of all-cause mortality or heart failure hospitalization better than subgroups based on bundle branch block morphology and QRS duration.

CONCLUSIONS

In the COMPANION trial, a machine learning algorithm produced a model that predicted clinical outcomes after CRT. Applied before device implant, this model may better differentiate outcomes over current clinical discriminators and improve shared decision-making with patients.

摘要

背景

心脏再同步治疗(CRT)可降低左心室功能降低和室内传导延迟的心力衰竭患者的发病率和死亡率。然而,个体结果差异很大。本研究旨在使用机器学习算法开发一种模型来预测 CRT 后的结局。

方法和结果

使用机器学习算法为 COMPANION 试验(心力衰竭的药物治疗、起搏和除颤比较)中的 CRT 后 12 个月的全因死亡率或心力衰竭住院建立模型。表现最好的模型是使用随机森林算法开发的。该模型预测全因死亡率或心力衰竭住院和全因死亡率的能力与使用束支阻滞形态和 QRS 持续时间组合获得的区分能力进行了比较。在 COMPANION 试验中的 595 例 CRT-除颤器患者中,有 105 例死亡(中位随访时间为 15.7 个月)。束支阻滞形态和 QRS 持续时间区分的亚组之间的生存差异无统计学意义(=0.08)。随机森林模型产生了患者的四分位数,预测事件的最高和最低概率之间的生存率差异高达 8 倍(危险比,7.96;<0.0001)。该模型还比基于束支阻滞形态和 QRS 持续时间的亚组更好地区分了全因死亡率或心力衰竭住院的复合终点风险。

结论

在 COMPANION 试验中,机器学习算法产生了一种预测 CRT 后临床结局的模型。在设备植入前应用,该模型可能比当前临床判别器更好地区分结局,并改善与患者的共同决策。

相似文献

引用本文的文献

2
Precision medicine in the management of cardiac arrhythmias.心律失常管理中的精准医学
Herz. 2025 Apr;50(2):88-95. doi: 10.1007/s00059-025-05298-x. Epub 2025 Mar 8.
4
The evolving landscape of cardiometabolic diseases.心血管代谢疾病的不断演变态势。
EBioMedicine. 2024 Nov;109:105447. doi: 10.1016/j.ebiom.2024.105447. Epub 2024 Nov 4.

本文引用的文献

6
Machine Learning in Medicine.医学中的机器学习
Circulation. 2015 Nov 17;132(20):1920-30. doi: 10.1161/CIRCULATIONAHA.115.001593.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验