From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.).
Circ Arrhythm Electrophysiol. 2018 Jan;11(1):e005800. doi: 10.1161/CIRCEP.117.005800.
In human cardiac ventricle, is mainly comprised Kir2.1, but Kir2.2 and Kir2.3 heterotetramers occur and modulate . Long-QT syndrome-9-associated mutations cause decreased Kir2.1 current density, but Kir2.x heterotetramers have not been studied. Here, we determine the effect of long-QT syndrome-9- mutation F97C on Kir2.x homo- and heterotetramers and model-associated arrhythmia mechanisms.
Super-resolution microscopy, co-immunoprecipitation, cellular electrophysiology, on-cell Western blotting, and simulation of Purkinje and ventricular myocyte mathematical models were used. Kir2.x isoforms have unique subcellular colocalization in human cardiomyocytes and coimmunoprecipitate with Cav3. F97C-Cav3 decreased peak inward Kir2.2 current density by 50% (-120 mV; =0.019) and peak outward by 75% (-40 mV; <0.05) but did not affect Kir2.3 current density. FRET (Förster resonance energy transfer) efficiency for Kir2.2 with Cav3 is high, and on-cell Western blotting demonstrates decreased Kir2.2 membrane expression with F97C-Cav3. Cav3-F97C reduced peak inward and outward current density of Kir2.2/Kir2.1 or Kir2.2/Kir2.3 heterotetramers (<0.05). Only Cav3 scaffolding and membrane domains co-immunoprecipitation with Kir2.1 and Kir2.2 and Kir2.x-N-terminal Cav3 binding motifs are required for interaction. Mathematical Purkinje, but not ventricular, myocyte model incorporating simulated current reductions, predicts spontaneous delayed after-depolarization-mediated triggered activity.
Kir2.x isoforms have a unique intracellular pattern of distribution in association with specific Cav3 domains and that critically depends on interaction with N-terminal Kir2.x Cav3-binding motifs. Long-QT syndrome-9- mutation differentially regulates current density and cell surface expression of Kir2.x homomeric and heteromeric channels. Mathematical Purkinje cell model incorporating experimental findings suggests delayed after-depolarization-type triggered activity as a possible arrhythmia mechanism.
在人心室肌中,Kir2.1 主要构成 ,但 Kir2.2 和 Kir2.3 异四聚体也存在并调节 。长 QT 综合征 9 相关的 突变导致 Kir2.1 电流密度降低,但 Kir2.x 异四聚体尚未被研究。在此,我们确定长 QT 综合征 9 突变 F97C 对 Kir2.x 同源和异源四聚体的影响,并探讨相关的心律失常机制。
使用超分辨率显微镜、共免疫沉淀、细胞电生理学、膜片钳 Western blot 和浦肯野纤维及心室肌细胞数学模型进行模拟。Kir2.x 同工型在人心肌细胞中有独特的亚细胞共定位,并与 Cav3 共免疫沉淀。F97C-Cav3 使 Kir2.2 内向峰值电流密度降低 50%(-120 mV;=0.019),外向峰值电流密度降低 75%(-40 mV;<0.05),但不影响 Kir2.3 电流密度。Kir2.2 与 Cav3 的 FRET(荧光共振能量转移)效率较高,膜片钳 Western blot 显示 F97C-Cav3 使 Kir2.2 膜表达减少。Cav3-F97C 降低 Kir2.2/Kir2.1 或 Kir2.2/Kir2.3 异源四聚体的内向和外向峰值电流密度(<0.05)。仅 Cav3 支架和膜结构域与 Kir2.1 和 Kir2.2 及 Kir2.x 氨基端 Cav3 结合基序共同免疫沉淀,是相互作用所必需的。包含模拟电流减少的浦肯野纤维、而非心室肌细胞数学模型预测自发性延迟后除极介导的触发活动。
Kir2.x 同工型在心室肌中与特定的 Cav3 结构域形成独特的细胞内分布模式,这严重依赖于与 Kir2.x 氨基端 Cav3 结合基序的相互作用。长 QT 综合征 9 突变对 Kir2.x 同源和异源通道的电流密度和细胞表面表达有差异调节。包含实验发现的浦肯野纤维细胞数学模型提示延迟后除极型触发活动可能是一种心律失常机制。