Suppr超能文献

癌症中的代谢可塑性——糖酵解酶GPI、乳酸脱氢酶或膜转运蛋白MCTs的不同作用

Metabolic Plasiticy in Cancers-Distinct Role of Glycolytic Enzymes GPI, LDHs or Membrane Transporters MCTs.

作者信息

Ždralević Maša, Marchiq Ibtissam, de Padua Monique M Cunha, Parks Scott K, Pouysségur Jacques

机构信息

Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France.

Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco.

出版信息

Front Oncol. 2017 Dec 20;7:313. doi: 10.3389/fonc.2017.00313. eCollection 2017.

Abstract

Research on cancer metabolism has recently re-surfaced as a major focal point in cancer field with a reprogrammed metabolism no longer being considered as a mere consequence of oncogenic transformation, but as a hallmark of cancer. Reprogramming metabolic pathways and nutrient sensing is an elaborate way by which cancer cells respond to high bioenergetic and anabolic demands during tumorigenesis. Thus, inhibiting specific metabolic pathways at defined steps should provide potent ways of arresting tumor growth. However, both animal models and clinical observations have revealed that this approach is seriously limited by an extraordinary cellular metabolic plasticity. The classical example of cancer metabolic reprogramming is the preference for aerobic glycolysis, or Warburg effect, where cancers increase their glycolytic flux and produce lactate regardless of the presence of the oxygen. This allows cancer cells to meet the metabolic requirements for high rates of proliferation. Here, we discuss the benefits and limitations of disrupting fermentative glycolysis for impeding tumor growth at three levels of the pathway: (i) an upstream block at the level of the glucose-6-phosphate isomerase (GPI), (ii) a downstream block at the level of lactate dehydrogenases (LDH, isoforms A and B), and (iii) the endpoint block preventing lactic acid export (MCT1/4). Using these examples of genetic disruption targeting glycolysis studied in our lab, we will discuss the responses of different cancer cell lines in terms of metabolic rewiring, growth arrest, and tumor escape and compare it with the broader literature.

摘要

癌症代谢研究最近再度成为癌症领域的一个主要焦点,重编程的代谢不再被视为致癌转化的单纯结果,而是被看作癌症的一个标志。重编程代谢途径和营养感应是癌细胞在肿瘤发生过程中应对高生物能量和合成代谢需求的一种复杂方式。因此,在特定步骤抑制特定代谢途径应该能提供有效的阻止肿瘤生长的方法。然而,动物模型和临床观察都表明,这种方法受到细胞非凡的代谢可塑性的严重限制。癌症代谢重编程的经典例子是对有氧糖酵解的偏好,即瓦伯格效应,癌症在此过程中增加糖酵解通量并产生乳酸,而不管氧气是否存在。这使癌细胞能够满足高增殖率的代谢需求。在此,我们将在该途径的三个层面讨论破坏发酵性糖酵解以阻碍肿瘤生长的益处和局限性:(i)在葡萄糖-6-磷酸异构酶(GPI)水平的上游阻断,(ii)在乳酸脱氢酶(LDH,同工型A和B)水平的下游阻断,以及(iii)阻止乳酸输出的终点阻断(MCT1/4)。利用我们实验室研究的这些针对糖酵解的基因破坏实例,我们将从代谢重布线、生长停滞和肿瘤逃逸方面讨论不同癌细胞系的反应,并与更广泛的文献进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8acf/5742324/027443804bfc/fonc-07-00313-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验