Suppr超能文献

用于串联质谱统计置信度估计的渐进校准与平均:为何满足于单个诱饵?

Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?

作者信息

Keich Uri, Noble William Stafford

机构信息

School of Mathematics and Statistics F07, University of Sydney.

Department of Genome Sciences, Department of Computer Science and Engineering, University of Washington.

出版信息

Res Comput Mol Biol. 2017 May;10229:99-116. doi: 10.1007/978-3-319-56970-3_7. Epub 2017 Apr 12.

Abstract

Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, "Partial Calibration" utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and "Averaged TDC" (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with "Progressive Calibration" (PC), which attempts to find the "right" number of decoys required for calibration we see substantial impact in real datasets: when analyzing the data it typically yields almost the entire 17% increase in discoveries that "full calibration" yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database.

摘要

在串联质谱鉴定列表中估计错误发现率(FDR)大多是通过目标-诱饵竞争(TDC)来完成的。在此,我们提供了两种新方法,它们可以使用任意少量额外随机抽取的诱饵数据库来改进TDC。具体而言,“部分校准”利用了一种新的元评分方案,使我们能够逐步从校准所产生的鉴定数量增加中受益,并且“平均TDC”(a-TDC)减少了TDC对于小FDR值的宽松偏差及其整体变异性。将a-TDC与“渐进校准”(PC)相结合,PC试图找到校准所需的“正确”诱饵数量,我们在真实数据集中看到了显著影响:在分析数据时,它通常使用少60倍的诱饵就能产生几乎与“完全校准”(在FDR水平为0.05时)所产生的发现数量几乎整整17%的增长。我们的方法通过一种新颖的现实模拟方案得到了进一步验证,重要的是,它们更广泛地适用于控制从不完整数据库搜索中发现的FDR问题。

相似文献

3
Target-decoy false discovery rate estimation using Crema.使用 Crema 进行靶向诱饵假发现率估计。
Proteomics. 2024 Apr;24(8):e2300084. doi: 10.1002/pmic.202300084. Epub 2024 Feb 21.
4
5
Bridging the False Discovery Gap.弥合错误发现差距。
J Proteome Res. 2023 Jul 7;22(7):2172-2178. doi: 10.1021/acs.jproteome.3c00176. Epub 2023 Jun 1.
7
Improving Peptide-Level Mass Spectrometry Analysis via Double Competition.通过双重竞争提高肽段水平的质谱分析。
J Proteome Res. 2022 Oct 7;21(10):2412-2420. doi: 10.1021/acs.jproteome.2c00282. Epub 2022 Sep 27.
8
Competition-based control of the false discovery proportion.基于竞争的假发现率控制。
Biometrics. 2023 Dec;79(4):3472-3484. doi: 10.1111/biom.13830. Epub 2023 Jan 30.

本文引用的文献

1
2
Tandem Mass Spectrum Identification via Cascaded Search.通过级联搜索进行串联质谱鉴定
J Proteome Res. 2015 Aug 7;14(8):3027-38. doi: 10.1021/pr501173s. Epub 2015 Jun 30.
6
False discovery rates in spectral identification.光谱识别中的假发现率。
BMC Bioinformatics. 2012;13 Suppl 16(Suppl 16):S2. doi: 10.1186/1471-2105-13-S16-S2. Epub 2012 Nov 5.
7
Target-decoy approach and false discovery rate: when things may go wrong.靶向诱饵方法和错误发现率:当事情可能出错时。
J Am Soc Mass Spectrom. 2011 Jul;22(7):1111-20. doi: 10.1007/s13361-011-0139-3. Epub 2011 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验