Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
Tools for Bio-Imaging, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
Cell. 2018 Jan 11;172(1-2):318-330.e18. doi: 10.1016/j.cell.2017.12.018.
Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UV/blue and UV/green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently.
颜色视觉通过比较具有不同视觉色素的光感受器的信号来提取光谱信息。这种比较由颜色对立神经元进行编码,这些神经元在一个波长处兴奋,而在另一个波长处被抑制。在这里,我们通过双光子钙成像与视觉回路的遗传剖析相结合,研究了果蝇视觉系统中颜色对立处理的电路实现。我们报告说,UV/蓝色和 UV/绿色的颜色对立处理分别在“苍白”和“黄色”小眼的 R7/R8 内光感受器末端中实现。相同小眼类型的 R7 和 R8 光感受器通过 HisCl1 组胺受体直接相互抑制,并通过第二个组胺受体 Ort 接受额外的反馈抑制。在第一个视觉突触处的颜色对立处理代表了果蝇和脊椎动物之间出乎意料的共性;然而,在分子和细胞实现方面的差异表明,相同的原则是独立进化的。