Suppr超能文献

用于预测新型生物活性分子的集成学习方法

Ensemble learning method for the prediction of new bioactive molecules.

作者信息

Afolabi Lateefat Temitope, Saeed Faisal, Hashim Haslinda, Petinrin Olutomilayo Olayemi

机构信息

Department of Physical Sciences, College of Natural Sciences, Al-Hikmah University, Ilorin, Nigeria.

College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia.

出版信息

PLoS One. 2018 Jan 12;13(1):e0189538. doi: 10.1371/journal.pone.0189538. eCollection 2018.

Abstract

Pharmacologically active molecules can provide remedies for a range of different illnesses and infections. Therefore, the search for such bioactive molecules has been an enduring mission. As such, there is a need to employ a more suitable, reliable, and robust classification method for enhancing the prediction of the existence of new bioactive molecules. In this paper, we adopt a recently developed combination of different boosting methods (Adaboost) for the prediction of new bioactive molecules. We conducted the research experiments utilizing the widely used MDL Drug Data Report (MDDR) database. The proposed boosting method generated better results than other machine learning methods. This finding suggests that the method is suitable for inclusion among the in silico tools for use in cheminformatics, computational chemistry and molecular biology.

摘要

具有药理活性的分子可以为一系列不同的疾病和感染提供治疗方法。因此,寻找此类生物活性分子一直是一项持久的任务。正因如此,需要采用一种更合适、可靠且强大的分类方法来提高对新生物活性分子存在的预测能力。在本文中,我们采用了最近开发的不同增强方法(Adaboost)的组合来预测新的生物活性分子。我们利用广泛使用的MDL药物数据报告(MDDR)数据库进行了研究实验。所提出的增强方法比其他机器学习方法产生了更好的结果。这一发现表明该方法适合纳入用于化学信息学、计算化学和分子生物学的计算机模拟工具之中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa31/5766097/81ac24074e45/pone.0189538.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验