Schwarz D, Kollo M, Bosch C, Feinauer C, Whiteley I, Margrie T W, Cutforth T, Schaefer A T
Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany.
Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany.
Nat Commun. 2018 Jan 12;9(1):183. doi: 10.1038/s41467-017-02560-7.
Dense microcircuit reconstruction techniques have begun to provide ultrafine insight into the architecture of small-scale networks. However, identifying the totality of cells belonging to such neuronal modules, the "inputs" and "outputs," remains a major challenge. Here, we present the development of nanoengineered electroporation microelectrodes (NEMs) for comprehensive manipulation of a substantial volume of neuronal tissue. Combining finite element modeling and focused ion beam milling, NEMs permit substantially higher stimulation intensities compared to conventional glass capillaries, allowing for larger volumes configurable to the geometry of the target circuit. We apply NEMs to achieve near-complete labeling of the neuronal network associated with a genetically identified olfactory glomerulus. This allows us to detect sparse higher-order features of the wiring architecture that are inaccessible to statistical labeling approaches. Thus, NEM labeling provides crucial complementary information to dense circuit reconstruction techniques. Relying solely on targeting an electrode to the region of interest and passive biophysical properties largely common across cell types, this can easily be employed anywhere in the CNS.
密集微电路重建技术已开始为深入了解小规模网络的架构提供超精细的视角。然而,识别属于此类神经元模块的所有细胞,即“输入”和“输出”,仍然是一项重大挑战。在此,我们展示了用于全面操纵大量神经元组织的纳米工程电穿孔微电极(NEMs)的研发。结合有限元建模和聚焦离子束铣削,与传统玻璃毛细管相比,NEMs允许更高的刺激强度,从而能够针对目标电路的几何形状配置更大的体积。我们应用NEMs实现了与基因鉴定的嗅觉小球相关的神经元网络的近乎完全标记。这使我们能够检测到统计标记方法无法触及的布线架构的稀疏高阶特征。因此,NEM标记为密集电路重建技术提供了关键的补充信息。仅依靠将电极靶向感兴趣区域以及细胞类型之间基本共有的被动生物物理特性,这种方法可轻松应用于中枢神经系统的任何部位。