Institute of Physics, University of Greifswald, Greifswald 17489, Germany.
German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald 17489, Germany.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2405169121. doi: 10.1073/pnas.2405169121. Epub 2024 Oct 14.
Hibernation is a widespread and highly efficient mechanism to save energy in mammals. However, one major challenge of hibernation is maintaining blood circulation at low body temperatures, which strongly depends on the viscoelastic properties of red blood cells (RBCs). Here, we examined at physiologically relevant timescales the thermomechanical properties of hundreds of thousands of individual RBCs from the hibernating common noctule bat (), the nonhibernating Egyptian fruit bat (), and humans (). We exposed RBCs to temperatures encountered during normothermia and hibernation and found a significant increase in elasticity and viscosity with decreasing temperatures. Our data demonstrate that temperature adjustment of RBCs is mainly driven by membrane properties and not the cytosol while viscous dissipation in the membrane of both bat species exceeds the one in humans by a factor of 15. Finally, our results show that RBCs from both bat species reveal a transition to a more viscous-like state when temperature decreases. This process on a minute timescale has an effect size that is comparable with fluctuations in RBC viscoelasticity over the course of the year, implying that environmental factors, such as diets, have a lower impact on the capability of RBCs to respond to different temperatures than general physical properties of the cell membrane. In summary, our findings suggest membrane viscoelasticity as a promising target for identifying mechanisms that could be manipulated to ensure blood circulation at low body temperatures in humans, which may be one first step toward safe synthetic torpor in medicine and space flight.
冬眠是哺乳动物节约能量的一种广泛而高效的机制。然而,冬眠面临的一个主要挑战是在低温下维持血液循环,这强烈依赖于红细胞(RBC)的粘弹性特性。在这里,我们在生理相关的时间尺度上研究了来自冬眠的普通夜蝙蝠()、非冬眠的埃及果蝠()和人类()的数十万个体红细胞的热机械特性。我们将 RBC 暴露于正常体温和冬眠期间遇到的温度下,发现随着温度的降低,弹性和粘度显著增加。我们的数据表明,RBC 的温度调节主要是由膜特性驱动的,而不是细胞溶胶,而两种蝙蝠物种的膜中粘性耗散超过人类的 15 倍。最后,我们的结果表明,当温度降低时,两种蝙蝠物种的 RBC 都呈现出向更粘性状态的转变。这个过程在一分钟的时间尺度上的效应大小与 RBC 粘弹性在一年中的波动相当,这意味着环境因素,如饮食,对 RBC 适应不同温度的能力的影响要小于细胞膜的一般物理特性。总之,我们的研究结果表明,膜粘弹性是一个很有前途的目标,可以用来识别可能被操纵的机制,以确保人类在低温下的血液循环,这可能是医学和太空飞行中安全合成休眠的第一步。