World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul, 151-742, South Korea.
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, 305-701, South Korea.
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201704825. Epub 2018 Jan 19.
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has now exceeded 20%; thus, research focus has shifted to establishing the foundations for commercialization. One of the pivotal themes is to curtail the overall fabrication time, to reduce unit cost, and mass-produce PSCs. Additionally, energy dissipation during the thermal annealing (TA) stage must be minimized by realizing a genuine low-temperature (LT) process. Here, tin oxide (SnO ) thin films (TFs) are formulated at extremely high speed, within 5 min, under an almost room-temperature environment (<50 °C), using atmospheric Ar/O plasma energy (P-SnO ) and are applied as an electron transport layer of a "n-i-p"-type planar PSC. Compared with a thermally annealed SnO TF (T-SnO ), the P-SnO TF yields a more even surface but also outstanding electrical conductivity with higher electron mobility and a lower number of charge trap sites, consequently achieving a superior PCE of 19.56% in P-SnO -based PSCs. These findings motivate the use of a plasma strategy to fabricate various metal oxide TFs using the sol-gel route.
钙钛矿太阳能电池 (PSC) 的功率转换效率 (PCE) 现已超过 20%;因此,研究重点已转移到为商业化奠定基础。其中一个关键主题是缩短整体制造时间、降低单位成本并大规模生产 PSC。此外,通过实现真正的低温 (LT) 工艺,必须最小化热退火 (TA) 阶段的能量耗散。在这里,使用大气 Ar/O 等离子体能量 (P-SnO ),在几乎室温环境(<50°C)下以极快的速度(5 分钟内)配制氧化锡 (SnO ) 薄膜 (TF),并将其用作“n-i-p”-型平面 PSC 的电子传输层。与经过热退火的 SnO TF (T-SnO )相比,P-SnO TF 具有更均匀的表面,但也具有出色的导电性,电子迁移率更高,电荷俘获位点数更低,因此在基于 P-SnO 的 PSC 中实现了卓越的 PCE(19.56%)。这些发现促使人们使用等离子体策略使用溶胶-凝胶法制造各种金属氧化物 TF。