Motwani Manish, Dey Damini, Berman Daniel S, Germano Guido, Achenbach Stephan, Al-Mallah Mouaz H, Andreini Daniele, Budoff Matthew J, Cademartiri Filippo, Callister Tracy Q, Chang Hyuk-Jae, Chinnaiyan Kavitha, Chow Benjamin J W, Cury Ricardo C, Delago Augustin, Gomez Millie, Gransar Heidi, Hadamitzky Martin, Hausleiter Joerg, Hindoyan Niree, Feuchtner Gudrun, Kaufmann Philipp A, Kim Yong-Jin, Leipsic Jonathon, Lin Fay Y, Maffei Erica, Marques Hugo, Pontone Gianluca, Raff Gilbert, Rubinshtein Ronen, Shaw Leslee J, Stehli Julia, Villines Todd C, Dunning Allison, Min James K, Slomka Piotr J
Departments of Imaging and Medicine and the Cedars-Sinai Heart Institute, and the Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Department of Cardiology, Friedrich Alexander Universität Erlangen-Nürnberg, Germany.
Eur Heart J. 2017 Feb 14;38(7):500-507. doi: 10.1093/eurheartj/ehw188.
Traditional prognostic risk assessment in patients undergoing non-invasive imaging is based upon a limited selection of clinical and imaging findings. Machine learning (ML) can consider a greater number and complexity of variables. Therefore, we investigated the feasibility and accuracy of ML to predict 5-year all-cause mortality (ACM) in patients undergoing coronary computed tomographic angiography (CCTA), and compared the performance to existing clinical or CCTA metrics.
The analysis included 10 030 patients with suspected coronary artery disease and 5-year follow-up from the COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry. All patients underwent CCTA as their standard of care. Twenty-five clinical and 44 CCTA parameters were evaluated, including segment stenosis score (SSS), segment involvement score (SIS), modified Duke index (DI), number of segments with non-calcified, mixed or calcified plaques, age, sex, gender, standard cardiovascular risk factors, and Framingham risk score (FRS). Machine learning involved automated feature selection by information gain ranking, model building with a boosted ensemble algorithm, and 10-fold stratified cross-validation. Seven hundred and forty-five patients died during 5-year follow-up. Machine learning exhibited a higher area-under-curve compared with the FRS or CCTA severity scores alone (SSS, SIS, DI) for predicting all-cause mortality (ML: 0.79 vs. FRS: 0.61, SSS: 0.64, SIS: 0.64, DI: 0.62; P< 0.001).
Machine learning combining clinical and CCTA data was found to predict 5-year ACM significantly better than existing clinical or CCTA metrics alone.
接受无创成像检查的患者的传统预后风险评估基于有限的临床和成像结果选择。机器学习(ML)可以考虑更多数量和更复杂的变量。因此,我们研究了ML预测接受冠状动脉计算机断层血管造影(CCTA)患者5年全因死亡率(ACM)的可行性和准确性,并将其性能与现有的临床或CCTA指标进行比较。
分析纳入了10030例疑似冠状动脉疾病患者,并来自临床结果的冠状动脉CT血管造影评估:一项国际多中心注册研究的5年随访数据。所有患者均接受CCTA作为其标准治疗。评估了25个临床参数和44个CCTA参数,包括节段狭窄评分(SSS)、节段累及评分(SIS)、改良杜克指数(DI)、非钙化、混合或钙化斑块节段数、年龄、性别、标准心血管危险因素和弗雷明汉姆风险评分(FRS)。机器学习包括通过信息增益排名进行自动特征选择、使用增强集成算法进行模型构建以及10倍分层交叉验证。745例患者在5年随访期间死亡。与单独的FRS或CCTA严重程度评分(SSS、SIS、DI)相比,机器学习在预测全因死亡率方面表现出更高的曲线下面积(ML:0.79 vs. FRS:0.61,SSS:0.64,SIS:0.64,DI:0.62;P<0.001)。
发现结合临床和CCTA数据的机器学习在预测5年ACM方面明显优于单独的现有临床或CCTA指标。