Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA.
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA.
Nat Methods. 2018 Feb;15(2):107-114. doi: 10.1038/nmeth.4540. Epub 2018 Jan 1.
We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.
我们介绍了 Interactome INSIDER,这是一种将基因组变异信息与结构蛋白质-蛋白质相互作用组联系起来的工具。该工具的基础是应用机器学习来预测 185957 个人类和 7 种模式生物的蛋白质相互作用中的蛋白质相互作用界面,其中包括整个已确定的人类二元相互作用组。预测的界面表现出与已知界面相似的功能特性,包括疾病突变和复发性癌症突变的富集。通过 2164 个从头突变实验,我们表明,预测和已知界面残基的突变以相似的速率和更频繁地破坏相互作用,而不是预测界面之外的突变。为了促进功能基因组学研究,Interactome INSIDER(http://interactomeinsider.yulab.org)使用户能够识别变体或疾病突变是否在各种分辨率下富集在已知和预测的相互作用界面中。用户可以探索已知的群体变体、疾病突变和体细胞癌症突变,或者可以为此上传自己的突变集。