Suppr超能文献

结构信息指导的人类相互作用组揭示疾病突变对蛋白质组的广泛扰动。

Structurally-informed human interactome reveals proteome-wide perturbations by disease mutations.

作者信息

Xiong Dapeng, Qiu Yunguang, Zhao Junfei, Zhou Yadi, Lee Dongjin, Gupta Shobhita, Torres Mateo, Lu Weiqiang, Liang Siqi, Kang Jin Joo, Eng Charis, Loscalzo Joseph, Cheng Feixiong, Yu Haiyuan

机构信息

Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA.

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.

出版信息

bioRxiv. 2024 Feb 1:2023.04.24.538110. doi: 10.1101/2023.04.24.538110.

Abstract

Human genome sequencing studies have identified numerous loci associated with complex diseases. However, translating human genetic and genomic findings to disease pathobiology and therapeutic discovery remains a major challenge at multiscale interactome network levels. Here, we present a deep-learning-based ensemble framework, termed PIONEER (rotein-protein nteractin itrfac pediction), that accurately predicts protein binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms, generating comprehensive structurally-informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods. We further systematically validated PIONEER predictions experimentally through generating 2,395 mutations and testing their impact on 6,754 mutation-interaction pairs, confirming the high quality and validity of PIONEER predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces after mapping mutations from ~60,000 germline exomes and ~36,000 somatic genomes. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from pan-cancer analysis of ~11,000 tumor whole-exomes across 33 cancer types. We show that PIONEER-predicted oncoPPIs are significantly associated with patient survival and drug responses from both cancer cell lines and patient-derived xenograft mouse models. We identify a landscape of PPI-perturbing tumor alleles upon ubiquitination by E3 ligases, and we experimentally validate the tumorigenic KEAP1-NRF2 interface mutation p.Thr80Lys in non-small cell lung cancer. We show that PIONEER-predicted PPI-perturbing alleles alter protein abundance and correlates with drug responses and patient survival in colon and uterine cancers as demonstrated by proteogenomic data from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.

摘要

人类基因组测序研究已经确定了许多与复杂疾病相关的基因座。然而,在多尺度相互作用组网络层面,将人类遗传和基因组研究结果转化为疾病病理生物学和治疗方法的发现仍然是一项重大挑战。在此,我们提出了一种基于深度学习的集成框架,称为PIONEER(蛋白质-蛋白质相互作用界面预测),它能够准确预测人类以及其他七种常见模式生物中所有已知蛋白质相互作用的蛋白质结合伴侣特异性界面,生成全面的结构信息丰富的蛋白质相互作用组。我们证明PIONEER优于现有的最先进方法。我们通过生成2395个突变并测试它们对6754个突变-相互作用对的影响,进一步系统地通过实验验证了PIONEER的预测,证实了PIONEER预测的高质量和有效性。我们表明,在将来自约60000个种系外显子组和约36000个体细胞基因组的突变进行映射后,疾病相关突变在PIONEER预测的蛋白质-蛋白质界面中富集。我们通过对33种癌症类型的约11000个肿瘤全外显子组进行泛癌分析,确定了586种与PIONEER预测的界面体细胞突变富集的显著蛋白质-蛋白质相互作用(称为肿瘤蛋白相互作用)。我们表明,PIONEER预测的肿瘤蛋白相互作用与癌细胞系和患者来源的异种移植小鼠模型中的患者生存和药物反应显著相关。我们确定了E3连接酶泛素化后干扰蛋白质相互作用的肿瘤等位基因景观,并通过实验验证了非小细胞肺癌中致癌的KEAP1-NRF2界面突变p.Thr80Lys。我们表明,PIONEER预测的干扰蛋白质相互作用的等位基因会改变蛋白质丰度,并与结肠癌和子宫癌中的药物反应和患者生存相关,这由美国国立癌症研究所临床蛋白质组肿瘤分析联盟的蛋白质基因组数据所证明。PIONEER作为一个网络服务器平台和一个软件包实现,识别疾病相关等位基因的功能后果,并在多尺度相互作用组网络层面为精准医学提供了一个深度学习工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a544/10851997/d77b3bf74c10/nihpp-2023.04.24.538110v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验